MySQL 索引实践(上)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: MySQL 索引实践

使用的表


CREATE TABLE employees (
  id int(11) NOT NULL AUTO_INCREMENT,
  name varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',
  age int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
  position varchar(20) NOT NULL DEFAULT '' COMMENT '职位',
  hire_time timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',
  PRIMARY KEY (id),
  KEY idx_name_age_position USING BTREE (name, age, position)
) ENGINE = InnoDB AUTO_INCREMENT = 4 CHARSET = utf8 COMMENT '员工记录表';
INSERT INTO employees (name, age, position, hire_time) VALUES ('LiLei', 22, 'manager', NOW());
INSERT INTO employees (name, age, position, hire_time) VALUES ('HanMeimei', 23, 'dev', NOW());
INSERT INTO employees (name, age, position, hire_time) VALUES ('Lucy', 23, 'dev', NOW());


最佳实践


1. 全值匹配


EXPLAIN SELECT * FROM employees WHERE name= 'LiLei';


image.png


EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age = 22;


image.png


EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age = 22 AND position ='manager';


image.png

2.最佳左前缀法则


如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。


EXPLAIN SELECT * FROM employees WHERE age = 22 AND position ='manager';


image.png


EXPLAIN SELECT * FROM employees WHERE position = 'manager';


image.png


EXPLAIN SELECT * FROM employees WHERE name = 'LiLei';


image.png

3.不在索引列上做任何操作(计算、函数、(自动or手动)类型转换),会导致索引失效而转向全表扫描


EXPLAIN SELECT * FROM employees WHERE name = 'LiLei';


image.png


EXPLAIN SELECT * FROM employees WHERE left(name,3) = 'LiLei';


image.png

4.存储引擎不能使用索引中范围条件右边的列


EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age = 22 AND position ='manager';


image.png

EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age > 22 AND position ='manager';


image.png


5.尽量使用覆盖索引(只访问索引的查询(索引列包含查询列)),减少select *语句


image.png

EXPLAIN SELECT * FROM employees WHERE name= 'LiLei' AND age = 23 AND position ='manager';


image.png


6.mysql在使用不等于(!=或者<>)的时候无法使用索引会导致全表扫描


EXPLAIN SELECT * FROM employees WHERE name != 'LiLei';


image.png


7.is null,is not null 也无法使用索引


EXPLAIN SELECT * FROM employees WHERE name is null;



image.png


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
8天前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
|
30天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
1月前
|
存储 NoSQL 关系型数据库
为什么MySQL不使用红黑树做索引
本文详细探讨了MySQL索引机制,解释了为何添加索引能提升查询效率。索引如同数据库的“目录”,在数据量庞大时提高查询速度。文中介绍了常见索引数据结构:哈希表、有序数组和搜索树(包括二叉树、平衡二叉树、红黑树、B-树和B+树)。重点分析了B+树在MyISAM和InnoDB引擎中的应用,并讨论了聚簇索引、非聚簇索引、联合索引及最左前缀原则。最后,还介绍了LSM-Tree在高频写入场景下的优势。通过对比多种数据结构,帮助理解不同场景下的索引选择。
80 6
|
1月前
|
SQL 关系型数据库 MySQL
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
109 0
案例剖析:MySQL唯一索引并发插入导致死锁!
|
13天前
|
关系型数据库 MySQL Linux
Linux环境下MySQL数据库自动定时备份实践
数据库备份是确保数据安全的重要措施。在Linux环境下,实现MySQL数据库的自动定时备份可以通过多种方式完成。本文将介绍如何使用`cron`定时任务和`mysqldump`工具来实现MySQL数据库的每日自动备份。
32 3
|
12天前
|
存储 监控 关系型数据库
MySQL自增ID耗尽解决方案:应对策略与实践技巧
在MySQL数据库中,自增ID(AUTO_INCREMENT)是一种特殊的属性,用于自动为新插入的行生成唯一的标识符。然而,当自增ID达到其最大值时,会发生什么?又该如何解决?本文将探讨MySQL自增ID耗尽的问题,并提供一些实用的解决方案。
22 1
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
63 3
Mysql(4)—数据库索引
|
27天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
71 9
|
21天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
104 1
|
1月前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
64 1
下一篇
无影云桌面