☆打卡算法☆LeetCode 126. 单词接龙 II 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: “给定两个单词beginWord和endWord,以及一个字典wordList,找出并返回所有从beginWord到endWrod之间的最短转换序列。”

一、题目


1、算法题目

“给定两个单词beginWord和endWord,以及一个字典wordList,找出并返回所有从beginWord到endWrod之间的最短转换序列。”

题目链接:

来源:力扣(LeetCode)

链接:  126. 单词接龙 II - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

按字典 wordList 完成从单词 beginWord 到单词 endWord 转化,一个表示此过程的 转换序列 是形式上像 beginWord -> s1 -> s2 -> ... -> sk 这样的单词序列,并满足:

每对相邻的单词之间仅有单个字母不同。 转换过程中的每个单词 si(1 <= i <= k)必须是字典 wordList 中的单词。注意,beginWord 不必是字典 wordList 中的单词。 sk == endWord 给你两个单词 beginWord 和 endWord ,以及一个字典 wordList 。请你找出并返回所有从 beginWord 到 endWord 的 最短转换序列 ,如果不存在这样的转换序列,返回一个空列表。每个序列都应该以单词列表 [beginWord, s1, s2, ..., sk] 的形式返回。

示例 1:
输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
输出:[["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
解释:存在 2 种最短的转换序列:
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
"hit" -> "hot" -> "lot" -> "log" -> "cog"
复制代码
示例 2:
输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
输出:[]
解释:endWord "cog" 不在字典 wordList 中,所以不存在符合要求的转换序列。
复制代码


二、解题


1、思路分析

这题是求两个单词的最短转换序列,首先可以想到的就是使用广度优先搜索算法。

把每个单词抽象为一个顶点,两个单词只可以改变一个字母进行转换,将满足条件的条件的点相连。

寻找最短转换序列,需要输出所有的最短路径,因此需要记录遍历路径,然后通过回溯算法得到所有的最短路径。


2、代码实现

代码参考:

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;
public class Solution {
    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        List<List<String>> res = new ArrayList<>();
        // 因为需要快速判断扩展出的单词是否在 wordList 里,因此需要将 wordList 存入哈希表,这里命名为「字典」
        Set<String> dict = new HashSet<>(wordList);
        // 特殊用例判断
        if (!dict.contains(endWord)) {
            return res;
        }
        dict.remove(beginWord);
        // 第 1 步:广度优先遍历建图
        // 记录扩展出的单词是在第几次扩展的时候得到的,key:单词,value:在广度优先遍历的第几层
        Map<String, Integer> steps = new HashMap<>();
        steps.put(beginWord, 0);
        // 记录了单词是从哪些单词扩展而来,key:单词,value:单词列表,这些单词可以变换到 key ,它们是一对多关系
        Map<String, List<String>> from = new HashMap<>();
        int step = 1;
        boolean found = false;
        int wordLen = beginWord.length();
        Queue<String> queue = new LinkedList<>();
        queue.offer(beginWord);
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                String currWord = queue.poll();
                char[] charArray = currWord.toCharArray();
                // 将每一位替换成 26 个小写英文字母
                for (int j = 0; j < wordLen; j++) {
                    char origin = charArray[j];
                    for (char c = 'a'; c <= 'z'; c++) {
                        charArray[j] = c;
                        String nextWord = String.valueOf(charArray);
                        if (steps.containsKey(nextWord) && step == steps.get(nextWord)) {
                            from.get(nextWord).add(currWord);
                        }
                        if (!dict.contains(nextWord)) {
                            continue;
                        }
                        // 如果从一个单词扩展出来的单词以前遍历过,距离一定更远,为了避免搜索到已经遍历到,且距离更远的单词,需要将它从 dict 中删除
                        dict.remove(nextWord);
                        // 这一层扩展出的单词进入队列
                        queue.offer(nextWord);
                        // 记录 nextWord 从 currWord 而来
                        from.putIfAbsent(nextWord, new ArrayList<>());
                        from.get(nextWord).add(currWord);
                        // 记录 nextWord 的 step
                        steps.put(nextWord, step);
                        if (nextWord.equals(endWord)) {
                            found = true;
                        }
                    }
                    charArray[j] = origin;
                }
            }
            step++;
            if (found) {
                break;
            }
        }
        // 第 2 步:深度优先遍历找到所有解,从 endWord 恢复到 beginWord ,所以每次尝试操作 path 列表的头部
        if (found) {
            Deque<String> path = new ArrayDeque<>();
            path.add(endWord);
            dfs(from, path, beginWord, endWord, res);
        }
        return res;
    }
    public void dfs(Map<String, List<String>> from, Deque<String> path, String beginWord, String cur, List<List<String>> res) {
        if (cur.equals(beginWord)) {
            res.add(new ArrayList<>(path));
            return;
        }
        for (String precursor : from.get(cur)) {
            path.addFirst(precursor);
            dfs(from, path, beginWord, precursor, res);
            path.removeFirst();
        }
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度


三、总结

由于本题起点和终点固定。

可以从起点和终点同时开始进行双向广度优先搜索。

可以降低时间复杂度。


相关文章
|
4月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
66 0
|
4月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
85 3
|
6天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
3天前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
24天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
29天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
58 6
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
2月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
273 30
|
2月前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
4月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。

推荐镜像

更多