☆打卡算法☆LeetCode 126. 单词接龙 II 算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: “给定两个单词beginWord和endWord,以及一个字典wordList,找出并返回所有从beginWord到endWrod之间的最短转换序列。”

一、题目


1、算法题目

“给定两个单词beginWord和endWord,以及一个字典wordList,找出并返回所有从beginWord到endWrod之间的最短转换序列。”

题目链接:

来源:力扣(LeetCode)

链接:  126. 单词接龙 II - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

按字典 wordList 完成从单词 beginWord 到单词 endWord 转化,一个表示此过程的 转换序列 是形式上像 beginWord -> s1 -> s2 -> ... -> sk 这样的单词序列,并满足:

每对相邻的单词之间仅有单个字母不同。 转换过程中的每个单词 si(1 <= i <= k)必须是字典 wordList 中的单词。注意,beginWord 不必是字典 wordList 中的单词。 sk == endWord 给你两个单词 beginWord 和 endWord ,以及一个字典 wordList 。请你找出并返回所有从 beginWord 到 endWord 的 最短转换序列 ,如果不存在这样的转换序列,返回一个空列表。每个序列都应该以单词列表 [beginWord, s1, s2, ..., sk] 的形式返回。

示例 1:
输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
输出:[["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
解释:存在 2 种最短的转换序列:
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
"hit" -> "hot" -> "lot" -> "log" -> "cog"
复制代码
示例 2:
输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
输出:[]
解释:endWord "cog" 不在字典 wordList 中,所以不存在符合要求的转换序列。
复制代码


二、解题


1、思路分析

这题是求两个单词的最短转换序列,首先可以想到的就是使用广度优先搜索算法。

把每个单词抽象为一个顶点,两个单词只可以改变一个字母进行转换,将满足条件的条件的点相连。

寻找最短转换序列,需要输出所有的最短路径,因此需要记录遍历路径,然后通过回溯算法得到所有的最短路径。


2、代码实现

代码参考:

import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;
public class Solution {
    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        List<List<String>> res = new ArrayList<>();
        // 因为需要快速判断扩展出的单词是否在 wordList 里,因此需要将 wordList 存入哈希表,这里命名为「字典」
        Set<String> dict = new HashSet<>(wordList);
        // 特殊用例判断
        if (!dict.contains(endWord)) {
            return res;
        }
        dict.remove(beginWord);
        // 第 1 步:广度优先遍历建图
        // 记录扩展出的单词是在第几次扩展的时候得到的,key:单词,value:在广度优先遍历的第几层
        Map<String, Integer> steps = new HashMap<>();
        steps.put(beginWord, 0);
        // 记录了单词是从哪些单词扩展而来,key:单词,value:单词列表,这些单词可以变换到 key ,它们是一对多关系
        Map<String, List<String>> from = new HashMap<>();
        int step = 1;
        boolean found = false;
        int wordLen = beginWord.length();
        Queue<String> queue = new LinkedList<>();
        queue.offer(beginWord);
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                String currWord = queue.poll();
                char[] charArray = currWord.toCharArray();
                // 将每一位替换成 26 个小写英文字母
                for (int j = 0; j < wordLen; j++) {
                    char origin = charArray[j];
                    for (char c = 'a'; c <= 'z'; c++) {
                        charArray[j] = c;
                        String nextWord = String.valueOf(charArray);
                        if (steps.containsKey(nextWord) && step == steps.get(nextWord)) {
                            from.get(nextWord).add(currWord);
                        }
                        if (!dict.contains(nextWord)) {
                            continue;
                        }
                        // 如果从一个单词扩展出来的单词以前遍历过,距离一定更远,为了避免搜索到已经遍历到,且距离更远的单词,需要将它从 dict 中删除
                        dict.remove(nextWord);
                        // 这一层扩展出的单词进入队列
                        queue.offer(nextWord);
                        // 记录 nextWord 从 currWord 而来
                        from.putIfAbsent(nextWord, new ArrayList<>());
                        from.get(nextWord).add(currWord);
                        // 记录 nextWord 的 step
                        steps.put(nextWord, step);
                        if (nextWord.equals(endWord)) {
                            found = true;
                        }
                    }
                    charArray[j] = origin;
                }
            }
            step++;
            if (found) {
                break;
            }
        }
        // 第 2 步:深度优先遍历找到所有解,从 endWord 恢复到 beginWord ,所以每次尝试操作 path 列表的头部
        if (found) {
            Deque<String> path = new ArrayDeque<>();
            path.add(endWord);
            dfs(from, path, beginWord, endWord, res);
        }
        return res;
    }
    public void dfs(Map<String, List<String>> from, Deque<String> path, String beginWord, String cur, List<List<String>> res) {
        if (cur.equals(beginWord)) {
            res.add(new ArrayList<>(path));
            return;
        }
        for (String precursor : from.get(cur)) {
            path.addFirst(precursor);
            dfs(from, path, beginWord, precursor, res);
            path.removeFirst();
        }
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度


三、总结

由于本题起点和终点固定。

可以从起点和终点同时开始进行双向广度优先搜索。

可以降低时间复杂度。


目录
打赏
0
0
0
0
5
分享
相关文章
|
5月前
|
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
67 0
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
5月前
|
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
57 2
|
7月前
|
测试工程师的技能升级:LeetCode算法挑战与职业成长
这篇文章通过作者亲身体验LeetCode算法题的过程,探讨了测试工程师学习算法的重要性,并强调了算法技能对于测试职业成长的必要性。
115 1
测试工程师的技能升级:LeetCode算法挑战与职业成长
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
99 2
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
80 1
【算法】滑动窗口——串联所有单词的子串
【算法】滑动窗口——串联所有单词的子串
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
104 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。

推荐镜像

更多