☆打卡算法☆LeetCode 85、最大矩形 算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: “给定包含0和1的二维矩阵,找出只包含1的最大矩阵,返回其面积。”

一、题目


1、算法题目

“给定包含0和1的二维矩阵,找出只包含1的最大矩阵,返回其面积。”

题目链接:

来源:力扣(LeetCode)

链接:85. 最大矩形 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给定一个仅包含 01 、大小为 rows x cols 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。

网络异常,图片无法展示
|

示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:6
解释:最大矩形如上图所示。
复制代码
示例 2:
输入: matrix = []
输出: 0
复制代码


二、解题


1、思路分析

这道题跟84题【柱状图中最大的矩形】很类似,不过84题是一维的,这个是二维的。

首先,说一下暴力解法:列举所有可能出现的矩形,枚举矩形所有的左上角和右下角坐标,并检查该矩形是否是面积最大的,但是这样做时间复杂度过高,会超时。我发现在学算法之前我写出来的算法都是暴利解法。。。

OK,言归正传,这道题还是可以用单调栈来解决,单调栈的特性就是如果当前元素比栈顶元素小,就加入栈,不然就将栈中的元素弹出,知道当前元素小于栈顶元素就加入。

那么就可以使用单调栈的做法,找到最高的柱子,并找到它左右的最大高度,拼接成最大的矩形,得到面积就是想要的结果。


2、代码实现

代码参考:

class Solution {
    public int maximalRectangle(char[][] matrix) {
        int m = matrix.length;
        if (m == 0) {
            return 0;
        }
        int n = matrix[0].length;
        int[][] left = new int[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == '1') {
                    left[i][j] = (j == 0 ? 0 : left[i][j - 1]) + 1;
                }
            }
        }
        int ret = 0;
        for (int j = 0; j < n; j++) { // 对于每一列,使用基于柱状图的方法
            int[] up = new int[m];
            int[] down = new int[m];
            Deque<Integer> stack = new LinkedList<Integer>();
            for (int i = 0; i < m; i++) {
                while (!stack.isEmpty() && left[stack.peek()][j] >= left[i][j]) {
                    stack.pop();
                }
                up[i] = stack.isEmpty() ? -1 : stack.peek();
                stack.push(i);
            }
            stack.clear();
            for (int i = m - 1; i >= 0; i--) {
                while (!stack.isEmpty() && left[stack.peek()][j] >= left[i][j]) {
                    stack.pop();
                }
                down[i] = stack.isEmpty() ? m : stack.peek();
                stack.push(i);
            }
            for (int i = 0; i < m; i++) {
                int height = down[i] - up[i] - 1;
                int area = height * left[i][j];
                ret = Math.max(ret, area);
            }
        }
        return ret;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(mn)

其中m和n是矩阵的行数和列数。

空间复杂度: O(mn)

其中m和n是矩阵的行数和列数。


三、总结

代码与84题代码基本类似。

思路就是:

  • 枚举矩形的下边界,枚举下边界的每一列的高度
  • 找到最高的柱子向左右寻找最大的矩形
  • 得到矩形求出面积



相关文章
|
3月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
56 0
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
61 3
|
3天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
28天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
150 30
|
7天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
261 15
|
3月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
2月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
75 4
|
2月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####

热门文章

最新文章