☆打卡算法☆LeetCode 84、柱状图中最大的矩形 算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: “给定n个非负整数,用来表示柱状图每个柱子的高度,求柱状图中最大的矩形的面积。”

一、题目


1、算法题目

“给定n个非负整数,用来表示柱状图每个柱子的高度,求柱状图中最大的矩形的面积。”

题目链接:

来源:力扣(LeetCode)

链接:84. 柱状图中最大的矩形 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

网络异常,图片无法展示
|

示例 1:
输入: heights = [2,1,5,6,2,3]
输出: 10
解释: 最大的矩形为图中红色区域,面积为 10
复制代码
示例 2:
输入: heights = [2,4]
输出: 4
复制代码


二、解题


1、思路分析

这道题与42题【接雨水】类似,42题是求下雨之后能接多少雨水,这道题是求最大矩形,为什么总是把相似的题目拉出来讲呢,因为这类题都会有着相似的解题思路,可以复习之后再进行解答。

42题【接雨水】的解题方法主要有双指针、单调栈等,这道题也可以用单调栈来解题。

首先,来思考一下如何去求最大矩形,找到某一根柱子,将其固定为矩形的高度h,随后根据这根柱子向左右延伸,直到遇到高度小于h的柱子,这样就确定了矩形的左右边界,边界的宽度为w,面积为h * w。

但是在确定宽的时候要左右遍历,时间复杂度较高,所以这时候就可以使用单调栈去优化成一重遍历。

OK,首先说一下什么是单调栈,单调栈是一种很经典的数据结构,里面存放的数据都是有序的,可以分为单调递增站和单调递减栈,常用于解决最大区间、最大视野、最大矩形等。

以单调递增栈为例,如果新的元素比栈顶元素大,就入栈;如果比栈顶元素小,那么就将栈内元素弹出来,直到栈顶比新元素小。

这样的好处在于栈内的元素都是递增的,当元素出栈时,新元素是出栈元素后小的一个元素,这样就可以得到一个左右边界的高度,使用单调栈,在出栈操作时得到左右边界并计算面积。


2、代码实现

代码参考:

class Solution {
    public int largestRectangleArea(int[] heights) {
        int n = heights.length;
        int[] left = new int[n];
        int[] right = new int[n];
        Deque<Integer> mono_stack = new ArrayDeque<Integer>();
        for (int i = 0; i < n; ++i) {
            while (!mono_stack.isEmpty() && heights[mono_stack.peek()] >= heights[i]) {
                mono_stack.pop();
            }
            left[i] = (mono_stack.isEmpty() ? -1 : mono_stack.peek());
            mono_stack.push(i);
        }
        mono_stack.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!mono_stack.isEmpty() && heights[mono_stack.peek()] >= heights[i]) {
                mono_stack.pop();
            }
            right[i] = (mono_stack.isEmpty() ? n : mono_stack.peek());
            mono_stack.push(i);
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = Math.max(ans, (right[i] - left[i] - 1) * heights[i]);
        }
        return ans;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(N)

空间复杂度: O(N)


三、总结

1、对于某一个柱子,高度确定,要求它的左右边界。

2、根据左右边界求出宽度,长乘宽就可以得到面积

3、根据单调栈,在出栈操作的时候得到坐标边界,求出最大面积



相关文章
|
4月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
85 3
|
5天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
2天前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
23天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
28天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
58 6
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
2月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
271 30
|
2月前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
4月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
2月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
515 15

推荐镜像

更多