JVM 运行时堆内存如何分代?

简介: 对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,所有的对象实例都在这里分配内存。

对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,所有的对象实例都在这里分配内存。


Java堆是垃圾收集器管理的内存区域。从回收内存的角度看,由于大部分垃圾收集器大部分都是基于分代收集理论设计的,所以 Java 堆中经常会出现“新生代”,“老年代”,“永久代”,“Eden空间”,“From Survivor空间”,“To Survivor空间”等区域。这些区域划分仅仅是一部分垃圾收集器的共同特性或者说设计风格而已,而非某个Java虚拟机具体实现的固有内存布局,不是《Java虚拟机规范》里对Java堆的官方的定义。比如:Shenandoah、ZGC 就不支持分代。


JDK 1.7 分代结构


在 JDK 1.7 以及之前堆空间分为 3 部分:新生代,老年代,永久代。


然后新生代分为:Eden 区, 和两个 Survivor 区。如下图所示:


image.png


JDK 1.8 分代结构


在 JDK 1.8 及其以后,堆空间中移除了永久代。为什么删除永久代的缘由可以阅读以下文档:openjdk.java.net/jeps/122。其核心原因主要有以下几点:


  1. 这是 Hotspot 和 JRockit 虚拟机融合。JRockit 客户不需要配置永久代(因为JRockit 没有永久代),习惯不配置永久代。


  1. 增加元空间解决类加载所需要的内存空间,而且元空间默认是自动拓容的。这样减少内存溢出的可能。


堆空间移除永久代过后,堆空间的结构如下图所示:


image.png


运行时数据区结构如下图所示:


image.png


G1 收集器


G1将新生代,老年代的物理空间划分取消了。取而代之的是,G1算法将堆划分为若干个区域(Region),它仍然属于分代收集器。不过,这些区域的一部分包含新生代,新生代的垃圾收集依然采用暂停所有应用线程的方式,将存活对象拷贝到老年代或者Survivor空间。老年代也分成很多区域,G1收集器通过将对象从一个区域复制到另外一个区域,完成了清理工作。这就意味着,在正常的处理过程中,G1完成了堆的压缩(至少是部分堆的压缩),这样也就不会有cms内存碎片问题的存在了。


image.png


在G1中,还有一种特殊的区域,叫Humongous区域。 如果一个对象占用的空间超过了分区容量50%以上,G1收集器就认为这是一个巨型对象。这些巨型对象,默认直接会被分配在年老代,但是如果它是一个短期存在的巨型对象,就会对垃圾收集器造成负面影响。为了解决这个问题,G1划分了一个Humongous区,它用来专门存放巨型对象。如果一个H区装不下一个巨型对象,那么G1会寻找连续的H分区来存储。为了能找到连续的H区,有时候不得不启动Full GC。


对象内存分配


对象内存分配过程如下:


image.png


下面是具体的几种内存分配规则


对象优先分配在 Eden 区


大多数情况下,对象在新生代 Eden 区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次 Minor GC。 HotSpot虚拟机提供了-XX:+PrintGCDetails 这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。


测试代码:


/**
 * -XX:+PrintGCDetails
 */
public class GCTest {
    public static void main(String[] args) {
        byte[] allcation2 = new byte[8000 * 1024];
    }
}


输出结果


Heap
 PSYoungGen      total 38400K, used 11353K [0x0000000795580000, 0x0000000798000000, 0x00000007c0000000)
  eden space 33280K, 34% used [0x0000000795580000,0x00000007960966f8,0x0000000797600000)
  from space 5120K, 0% used [0x0000000797b00000,0x0000000797b00000,0x0000000798000000)
  to   space 5120K, 0% used [0x0000000797600000,0x0000000797600000,0x0000000797b00000)
 ParOldGen       total 87552K, used 0K [0x0000000740000000, 0x0000000745580000, 0x0000000795580000)
  object space 87552K, 0% used [0x0000000740000000,0x0000000740000000,0x0000000745580000)
 Metaspace       used 3017K, capacity 4556K, committed 4864K, reserved 1056768K
  class space    used 319K, capacity 392K, committed 512K, reserved 1048576K


我们可以通过内存空间的分布可以看出 allcation2 是被分配到 eden 区中的。


大对象直接进入老年代


大对象就是指需要大量连续内存空间的Java对象(比如:字符串、数组),JVM 参数 -XX:PretenureSizeThreshold 参数可以设置大对象的大小,指定大于该设置值的对象直接在老年代分配,不会进入年轻代,这个参数只有在 Serial 和 ParNew 两个收集器下有效。


比如设置:JVM 参数:


-XX:PretenureSizeThreshold=1000000(单位字节)

-XX:+UseSerialGC


在执行上面的第一个程序就会发现大对象直接进入了老年代。


这样做的目的就是避免在Eden区及两个Survivor区之间来回复制,产生大量的内存复制操作。


长期存活的对象将进入老年代


HotSpot虚拟机中多数收集器都采用了分代收集来管理堆内存,那内存回收时就必须能决策哪些存活对象应当放在新生代,哪些存活对象放在老年代中。为做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器,存储在对象头中。


对象通常在Eden区里诞生,如果经过第一次 Minor GC 后仍然存活,并且能被 Survivor 容纳的话,该对象会被移动到 Survivor 空间中,并且将其对象年龄设为1岁。对象在Survivor区中每熬过一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15),就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 设置。


动态对象年龄判断


为了能更好地适应不同程序的内存状况,HotSpot 虚拟机并不是永远要求对象的年龄必须达到 -XX:MaxTenuringThreshold 才能晋升老年代,如果在 Survivor 空间中相同年龄所有对象大小的总和大于 Survivor 空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到 -XX:MaxTenuringThreshold 中要求的年龄。


空间分配担保


在发生 Minor GC 之前,虚拟机必须先检查老年代最大可用的连续空间是否大于新生代所有对象总空间。


参考信息


  • 《深入理解 JVM 虚拟机-第三版》周志明




相关文章
|
17天前
|
存储 算法 Java
散列表的数据结构以及对象在JVM堆中的存储过程
本文介绍了散列表的基本概念及其在JVM中的应用,详细讲解了散列表的结构、对象存储过程、Hashtable的扩容机制及与HashMap的区别。通过实例和图解,帮助读者理解散列表的工作原理和优化策略。
29 1
散列表的数据结构以及对象在JVM堆中的存储过程
|
15天前
|
监控 Oracle Java
JDK 21中的分代ZGC:一场内存管理的革命
JDK 21引入了分代ZGC,为Java应用程序的内存管理带来了革命性的进步。分代ZGC通过将堆内存划分为年轻代和老年代,采用并发处理和染色指针技术,实现了高吞吐量、低延迟和更好的可扩展性。这一特性显著提升了系统的性能和稳定性。
109 51
|
12天前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。
|
1月前
|
Java
jvm复习,深入理解java虚拟机一:运行时数据区域
这篇文章深入探讨了Java虚拟机的运行时数据区域,包括程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区、元空间和运行时常量池,并讨论了它们的作用、特点以及与垃圾回收的关系。
64 19
jvm复习,深入理解java虚拟机一:运行时数据区域
|
17天前
|
程序员 开发者
分代回收和手动内存管理相比有何优势
分代回收和手动内存管理相比有何优势
|
1月前
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
66 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
1月前
|
存储 SQL 小程序
JVM知识体系学习五:Java Runtime Data Area and JVM Instruction (java运行时数据区域和java指令(大约200多条,这里就将一些简单的指令和学习))
这篇文章详细介绍了Java虚拟机(JVM)的运行时数据区域和JVM指令集,包括程序计数器、虚拟机栈、本地方法栈、直接内存、方法区和堆,以及栈帧的组成部分和执行流程。
32 2
JVM知识体系学习五:Java Runtime Data Area and JVM Instruction (java运行时数据区域和java指令(大约200多条,这里就将一些简单的指令和学习))
|
29天前
|
存储 算法 Java
Java虚拟机(JVM)的内存管理与性能优化
本文深入探讨了Java虚拟机(JVM)的内存管理机制,包括堆、栈、方法区等关键区域的功能与作用。通过分析垃圾回收算法和调优策略,旨在帮助开发者理解如何有效提升Java应用的性能。文章采用通俗易懂的语言,结合具体实例,使读者能够轻松掌握复杂的内存管理概念,并应用于实际开发中。
|
1月前
|
存储 监控 算法
JVM调优深度剖析:内存模型、垃圾收集、工具与实战
【10月更文挑战第9天】在Java开发领域,Java虚拟机(JVM)的性能调优是构建高性能、高并发系统不可或缺的一部分。作为一名资深架构师,深入理解JVM的内存模型、垃圾收集机制、调优工具及其实现原理,对于提升系统的整体性能和稳定性至关重要。本文将深入探讨这些内容,并提供针对单机几十万并发系统的JVM调优策略和Java代码示例。
51 2
|
1月前
|
存储 Java
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
这篇文章详细地介绍了Java对象的创建过程、内存布局、对象头的MarkWord、对象的定位方式以及对象的分配策略,并深入探讨了happens-before原则以确保多线程环境下的正确同步。
55 0
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配