带你看懂大数据采集引擎之Flume&采集目录中的日志

简介: 带你看懂大数据采集引擎之Flume&采集目录中的日志

一、Flume的介绍:


Flume由Cloudera公司开发,是一种提供高可用、高可靠、分布式海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于采集数据;同时,flume提供对数据进行简单处理,并写到各种数据接收方的能力,如果能用一句话概括Flume,那么Flume是实时采集日志的数据采集引擎。


二、Flume的体系结构:


Flume的体系结构分成三个部分:数据源、Flume、目的地


数据源种类有很多:可以来自directory、http、kafka等,flume提供了source组件用来采集数据源。


1、source作用:采集日志


source种类:


1、spooling directory source:采集目录中的日志


2、htttp source:采集http中的日志


3、kafka source:采集kafka中的日志


……


采集到的日志需要进行缓存,flume提供了channel组件用来缓存数据。


2、channel作用:缓存日志


channel种类:


1、memory channel:缓存到内存中(最常用)


2、JDBC channel:通过JDBC缓存到关系型数据库中


3、kafka channel:缓存到kafka中


……


缓存的数据最终需要进行保存,flume提供了sink组件用来保存数据。


3、sink作用:保存日志


sink种类:


1、HDFS sink:保存到HDFS中


2、HBase sink:保存到HBase中


3、Hive sink:保存到Hive中


4、kafka sink:保存到kafka中


……


官网中有flume各个组件不同种类的列举:


三、安装和配置Flume:


1、安装:tar -zxvf apache-flume-1.7.0-bin.tar.gz -C ~/training


2、创建配置文件a4.conf:定义agent,定义source、channel、sink并组装起来,定义生成日志文件的条件。


以下是a4.conf配置文件中的内容,其中定义了数据源来自目录、数据缓存到内存中,数据最终保存到HDFS中,并且定义了生成日志文件的条件:日志文件大小达到128M或者经过60秒生成日志文件。


#定义agent名, source、channel、sink的名称
a4.sources = r1
a4.channels = c1
a4.sinks = k1
#具体定义source
a4.sources.r1.type = spooldir
a4.sources.r1.spoolDir = /root/training/logs
#具体定义channel
a4.channels.c1.type = memory
a4.channels.c1.capacity = 10000
a4.channels.c1.transactionCapacity = 100
#定义拦截器,为消息添加时间戳
a4.sources.r1.interceptors = i1
a4.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
#具体定义sink
a4.sinks.k1.type = hdfs
a4.sinks.k1.hdfs.path = hdfs://192.168.157.11:9000/flume/%Y%m%d
a4.sinks.k1.hdfs.filePrefix = events-
a4.sinks.k1.hdfs.fileType = DataStream
#不按照条数生成文件
a4.sinks.k1.hdfs.rollCount = 0
#HDFS上的文件达到128M时生成一个日志文件
a4.sinks.k1.hdfs.rollSize = 134217728
#HDFS上的文件达到60秒生成一个日志文件
a4.sinks.k1.hdfs.rollInterval = 60
#组装source、channel、sink
a4.sources.r1.channels = c1
a4.sinks.k1.channel = c1


四、使用Flume语句采集数据:


1、创建目录,用于保存日志:


mkdir /root/training/logs


2、启动Flume,准备实时采集日志:


bin/flume-ng.agent -n a4 -f myagent/a4.conf -c conf -Dflume.root.logger=INFO.console


3、将日志导入到目录中:


cp * ~/training/logs


五、Sqoop和Flume的相同点和不同点:


相同点:sqoop和flume只有一种安装模式,不存在本地模式、集群模式等。


不同点:sqoop批量采集数据,flume实时采集数据。


作者:李金泽AllenLi,清华大学硕士研究生,研究方向:大数据和人工智能


相关文章
|
7月前
|
数据采集 存储 大数据
大数据之路:阿里巴巴大数据实践——日志采集与数据同步
本资料全面介绍大数据处理技术架构,涵盖数据采集、同步、计算与服务全流程。内容包括Web/App端日志采集方案、数据同步工具DataX与TimeTunnel、离线与实时数仓架构、OneData方法论及元数据管理等核心内容,适用于构建企业级数据平台体系。
|
4月前
|
数据采集 缓存 大数据
【赵渝强老师】大数据日志采集引擎Flume
Apache Flume 是一个分布式、可靠的数据采集系统,支持从多种数据源收集日志信息,并传输至指定目的地。其核心架构由Source、Channel、Sink三组件构成,通过Event封装数据,保障高效与可靠传输。
315 1
|
存储 分布式计算 Java
踏上大数据第一步:flume
Flume 是一个分布式、可靠且高效的系统,用于收集、聚合和移动大量日志数据。它是 Apache 顶级项目,广泛应用于 Hadoop 生态系统中。Flume 支持从多种数据源(如 Web 服务器、应用服务器)收集日志,并将其传输到中央存储(如 HDFS、HBase)。其核心组件包括 Source、Channel 和 Sink,分别负责数据获取、临时存储和最终存储。本文还介绍了在 Ubuntu 20.04 上安装 Flume 1.9.0 的步骤,涵盖 JDK 安装、Flume 下载、解压、配置环境变量及验证安装等详细过程。
361 10
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
764 4
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
368 4
|
存储 消息中间件 大数据
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
248 1
|
存储 分布式计算 NoSQL
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
大数据-136 - ClickHouse 集群 表引擎详解1 - 日志、Log、Memory、Merge
384 0
|
9月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
986 54
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
451 9