使用Dice loss实现清晰的边界检测

简介: 在深度学习和计算机视觉中,人们正在努力提取特征,为各种视觉任务输出有意义的表示。在一些任务中,我们只关注对象的几何形状,而不管颜色、纹理和照明等。这就是边界检测的作用所在。

问题定义

ef967498696d81cd1cb7beefb44abbb3.png

图1是一个边界检测的例子,顾名思义,边界检测是从图像中检测对象边界的任务。这是一个不适定的问题,因为问题设置本身存在歧义。如图所示,对于室内房间图像(左),ground truth(中)定义房间内的ground truth对象边界,并且预测(右)估计房间的对象边界。然而,我们可以看到,估计的边界远不止是ground truth,包括来自房间布局、窗帘,甚至沙发纹理的不必要的边界线。提取干净且有意义的对象边界并不容易。

 

原始方法

边界检测的一个直接解决方案是将其视为语义分割问题。在标注中简单地将边界为1和其他区域标记为0,我们可以将其表示为一个二分类语义分割问题,以二值交叉熵损失为损失函数。然而,它有两个原因:高度不平衡的标签分布和每像素交叉熵损失的内在问题。

 

Cross Entropy Loss的局限性


当使用交叉熵损失时,标签的统计分布对训练精度起着很重要的作用。标签分布越不平衡,训练就越困难。虽然加权交叉熵损失可以减轻难度,但改进并不显著,交叉熵损失的内在问题也没有得到解决。在交叉熵损失中,损失按每像素损失的平均值计算,每像素损失按离散值计算,而不知道其相邻像素是否为边界。因此,交叉熵损失只考虑微观意义上的损失,而不是全局考虑,这还不足以预测图像水平。


262d1b0f81b8625f8c3dbad174d90012.png

如图2所示。对于输入图像(左),比较了交叉熵损失(中)和加权交叉熵损失(右)的预测。右边的边界比中间的要好得多,但预测的边界并不干净,肮脏的草地纹理边界仍然存在。


Dice Loss


Dice Loss起源于Sørensen-Dice系数,这是20世纪40年代用来测量两个样本之间的相似性的统计数据。它是由米勒塔里等人带到计算机视觉的。2016年进行三维医学图像分割。

4e472295a6029d99d00427bef1b85e7a.png

图3 骰子系数

上式显示了骰子系数方程,其中pi和gi分别表示对应的像素预测值和ground truth。在边界检测场景中,pi和gi的值为0或1,表示像素是否为边界,是的时候值为1,否则值为0。因此,分母是预测和ground truth的总边界像素的和,数值是正确预测的边界像素的和,因为只有当pi和gi值匹配时(两个值1)才递增。


3f38a43593cfc84d71c58082c5dcf77c.png

图4是图3的另一个视图。从集理论的角度来看,其中骰子系数(DSC)是两个集合之间重叠的度量。例如,如果两组A和B完全重叠,DSC的最大值为1。否则,DSC开始减少,如果两个组完全不重叠,则最小值为0。因此,DSC的范围在0到1之间,越大越好。因此,我们可以使用1-DSC作为骰子损失来最大化两组之间的重叠。


在边界检测任务中,ground truth边界像素和预测的边界像素可以被视为两个集合。通过利用Dice Loss,这两组被训练一点地重叠。如图4所示。分母考虑全局尺度上的边界像素的总数,而数值考虑局部尺度上的两个集合之间的重叠。因此,Dice Loss在本地和全局上都考虑了损失信息,这对于高精度至关重要。

 

结果


cd7681985b27fa5b7b716d4b9f700ebd.png


如图5所示。使用Dice Loss(c列)的预测结果比其他方法(d、e列)具有更高的精度。特别是对于薄边界,因为只有当预测的边界像素与ground truth薄边界重叠,并且在其他区域没有预测的边界像素时,才可以减少Dice Loss。

相关文章
|
10天前
|
算法 数据可视化 PyTorch
IoU已经out了,试试这几个变体:GIoU、DIoU和CIoU介绍与对比分析
本文探讨了目标检测中常用的交并比(IoU)及其变体,包括广义交并比(GIoU)、距离交并比(DIoU)和完全交并比(CIoU)。这些指标不仅提高了模型在处理不重叠、距离较远或形状差异大的边界框时的表现,还为模型的学习过程提供了更深入的洞察。文章详细解释了各指标的计算方法及应用场景,并提供了相应的代码示例,帮助读者更好地理解和应用这些先进的评估指标。
65 7
IoU已经out了,试试这几个变体:GIoU、DIoU和CIoU介绍与对比分析
|
2月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
206 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
5月前
|
计算机视觉
【YOLOv10改进-损失函数】Shape-IoU:考虑边框形状与尺度的指标
YOLO目标检测专栏探讨了边框回归损失的创新方法,强调了目标形状和尺度对结果的影响。提出的新方法Shape-IoU关注边框自身属性,通过聚焦形状和尺度提高回归精度。实验显示,该方法提升了检测效果,超越现有技术,在多个任务中达到SOTA。论文和代码已公开。
|
7月前
|
计算机视觉
【YOLOv8改进】Shape-IoU:考虑边框形状与尺度的指标(论文笔记+引入代码)
YOLO目标检测专栏探讨了边框回归损失的创新方法,强调了目标形状和尺度对结果的影响。提出的新方法Shape-IoU关注边框自身属性,通过聚焦形状和尺度提高回归精度。实验显示,该方法提升了检测效果,超越现有技术,在多个任务中达到SOTA。论文和代码已公开。
|
7月前
|
计算机视觉
【YOLOv8改进】Inner-IoU: 基于辅助边框的IoU损失(论文笔记+引入代码)
YOLO目标检测专栏探讨了IoU损失的局限性,并提出创新改进。分析发现,不同尺度的辅助边框对高IoU和低IoU样本的回归有不同影响。因此,提出了Inner-IoU Loss,利用尺度因子ratio控制辅助边框大小以优化损失计算。实验验证了该方法能提升检测效果,增强泛化能力。创新点包括根据样本特性选择辅助边框尺度和Inner-IoU Loss的设计。更多详情见YOLO目标检测创新改进与实战案例专栏。
|
机器学习/深度学习 数据可视化 PyTorch
深度学习之如何使用Grad-CAM绘制自己的特征提取图-(Pytorch代码,详细注释)神经网络可视化-绘制自己的热力图
深度学习之如何使用Grad-CAM绘制自己的特征提取图-(Pytorch代码,详细注释)神经网络可视化-绘制自己的热力图
深度学习之如何使用Grad-CAM绘制自己的特征提取图-(Pytorch代码,详细注释)神经网络可视化-绘制自己的热力图
|
算法 C++ 芯片
RANSAC算法拟合平面实现(附代码c++)
RANSAC算法拟合平面实现(附代码c++)
459 0
|
数据挖掘 数据处理 索引
跟SCI学heatmap|文章中常见复杂热图的绘制方式(含代码),干货较多,建议耐心一下
跟SCI学heatmap|文章中常见复杂热图的绘制方式(含代码),干货较多,建议耐心一下
770 0
|
计算机视觉
让检测告别遮挡 | 详细解读NMS-Loss是如何解决目标检测中的遮挡问题?
让检测告别遮挡 | 详细解读NMS-Loss是如何解决目标检测中的遮挡问题?
565 0