《python 与数据挖掘 》一1.3 Python开发环境的搭建

简介: 本节书摘来自华章出版社《python 与数据挖掘 》一书中的第1章,第1.3节,作者张良均 杨海宏 何子健 杨 征,更多章节内容可以访问云栖社区“华章计算机”公众号查看。 1.3 Python开发环境的搭建 所谓编程语言,意指“与计算机交流时使用的语言”。

本节书摘来自华章出版社《python 与数据挖掘 》一书中的第1章,第1.3节,作者张良均 杨海宏 何子健 杨 征,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.3 Python开发环境的搭建

所谓编程语言,意指“与计算机交流时使用的语言”。它是一种被标准化的交流技
巧,用于连接程序员的思维和计算机的操作。学习编程语言的第一关,就是安装和环境配置。我们必须与计算机约定如何理解代码、指令和语法,才能够顺利地与计算机交流,赋予它复杂的功能。Python便是其中的一种“方言”。
本节将向大家详细介绍,如何在不同的操作系统上快捷地使用Python进行编程实现。

1.3.1 Python安装

对于新手,Python及其第三方模块在安装环节有许多已知的难题。比如源码编译的安装方式、环境变量的配置、不同模块之间的版本依赖问题。如果陷入其中的某一个泥潭之中,将浪费初学者大量的时间,消磨热情。当然,如果读者能独立克服,就能熟悉相关的重要概念,大有裨益。
为了能让读者顺利阅读本书的后续内容,以及避免不必要的麻烦,我们将采用更加简单的安装方式。本书使用的是Python的科学计算发行版——Anaconda。除Python本身之外,Anaconda囊括了科学计算和数据分析所需的主流模块,独立的包管理工具Conda以及两款不同风格的编辑器Jupyter和Spyder,具有开源精神且支持学术用途的免费额外性能提升。官方软件下载地址为:https://www.continuum.io/downloads
注意 本书使用的是当前主流的Python 2.7版本,有较多的网络参考资料。截至本书完稿时,Python作者宣布Python 2.x系列将会在2020年停止更新,Python 2.7是最后一个版本。Python 3.x拥有一系列重大的更新,包括一些基础的语法。在未来的日子里,越来越多的主流模块将逐渐转向Python 3.x版本。在社区真正成熟之前,我们建议入门级读者先熟练使用Python 2.7。

  1. Windows下安装Python
    Anaconda的存在使得在Windows图1-5 Windows下Anaconda的两个主要版本系统中安装Python得到极度简化,直接前往官方网站找到对应的下载内容(图1-5),并选择Python 2.7对应的安装包,注意区分32位和64位的版本。


982cc5293cf0c549eef6d940f5a402841b38315a


下载后运行Anaconda的安装程序,这里大部分的操作和一般软件的安装无异,需要注意的是:如图1-6所示,Anaconda默认会自动改写环境变量配置参数,使得用户能在任何的路径下使用Python命令行模式。


25aa289ce9f81dd918f99d51b2d81577e5d2104a


如果读者自行安装原始的Python版本,极容易忽略这一步,从而走入思维的盲区,导致永远不能自行安装成功。这也是我们推荐使用科学计算发行版Anaconda的原因。

  1. Linux下安装Python
    大多数Linux发行版,如CentOS、Debian、Ubuntu等,都已经自带了Python 2.x的主程序。因此,额外安装Anaconda需要做好管理的工作,避免两个不同版本的Python冲突,导致不必要的错误。如果读者确定内置版Python能够兼容书中代码,亦可不额外安装Anaconda。

下面介绍如何安装Anaconda,并避免与内置版的Python冲突,如图1-7所示。本教程以Ubuntu 16.06为例。
1)前往官方网站下载对应版本的Anaconda,默认情况下,Linux会自动将下载所得文件归档在“下载”文件夹中。
2)假设下载所得文件在“下载”这一文件夹中,如果不是,请替换路径,并输入下面的命令,以执行批处理指令,安装Anaconda。
$ bash ~/下载/Anaconda2-4.0.0-Linux-x86_64.sh


954bab80f029843e604616d9e1068930b35db317


安装过程中,将会在屏幕上打印出用户协议许可,你需要利用Enter继续阅读。阅读至文件末尾,输入yes并敲击Enter键来表示你同意以上内容并使用默认路径开始安装。
3)如图1-8所示,输入yes来确认允许Anaconda为你自动配置环境变量PATH。


c921cfd71ccfe1981a2e099bd917aa01f7cc7676


4)当看到图1-9中的欢迎信息之后,代表已经成功安装Anaconda。然后我们执行下面的命令,将Anaconda的位置加载至环境变量PATH的开头,使得当我们使用Python时,总是优先使用Anaconda版。
$ export PATH="$HOME/anaconda2/bin:$PATH"
之后,我们可以直接输入python,以检查是否能够正确使用Anaconda版的Python。


cc1d2d4f2525cb84ac0eda292710f62a8b02fae4


  1. Mac下安装Python
    类似Windows下的安装,Mac OS X系统用户可以直接前往官方网站下载一个图形化安装程序。同时,因为OS X系统是基于UNIX内核开发的,所以我们也能够打开终端,通过命令行的方式来安装。这里主要叙述利用终端安装的方法。

1)下载OS X下对应版本的Anaconda,如图1-10所示。
注意 利用终端安装Anaconda实际上是在进行“源码编译”。后续步骤中需要的是二进制文件(Command-Line Installer),而非图形化的安装界面(Graphical Installer)。


461d187f9f2b8005cf1044400f9a25912099977a


2)按下Alt + Space,打开Search界面,输入terminal,单击搜索出来的“Terminal”(终端)图标。
3)输入下面的命令,执行批处理指令,安装Anaconda,如图1-11所示。
$ bash~/Downloads/Anaconda2-4.0.0-MacOSX-x86_64.sh


b8bfcedf57b4e2d0836462c37b3cca4d48d95104


安装过程中,将会在屏幕上打印出用户协议许可,你需要利用Enter继续阅读。阅读至文件末尾,输入yes并敲击Enter键来表示你同意以上内容并使用默认路径开始安装。
4)输入yes来确认允许Anaconda为你自动配置环境变量PATH。
5)与Linux下安装类似,同样需要将Anaconda的位置加载至环境变量PATH的开头,使得当我们使用Python时,总是优先使用Anaconda版。
$ export PATH="$HOME/anaconda2/bin:$PATH"
之后,我们可以直接输入python,以检查是否能够正确使用Anaconda版的Python。

1.3.2 Python初识

1.命令行版本的Python Shell-Python(Command)
以Windows系统为例,安装Python后,你可以在开始菜单中,找到对应的Command Line版本的Python Shell,或者同时按下Win + R键,输入cmd并按回车,打开命令窗口,如图1-12所示。在命令窗口中输入python即可使用进入Python的命令行模式。


64da698fea0545c1b33eb1da46fe4692e4d1ae90



其中,可以看到对应的Python版本信息和系统信息。我们可以在标识符“>>>”后面输入代码,程序就会马上返回一个结果,如图1-13所示。


1bfdebac0f9d3cdd27226cebd4d74875f9aeb50a


Python Shell是交互式Shell,交互式是指当你输入代码到Python Shell中时就可以动态地看到相应的返回结果。
2.带图形界面的Python Shell-IDLE(Python GUI)
下面将要介绍的是带图形界面的Python GUI。在Windows下的所有程序上搜索IDLE,就可以直接打开Python Shell-IDLE。打开后界面如图1-14所示。


aea2eaa4a6583e22a472c9ffd7f84f4c8ed01f9a



我们同样可以在这个界面上输入代码,结果和在Command Line上输入的结果一样。但在这个界面上我们可以通过菜单栏的File –> New File 创建Python脚本,在Python脚本上写多行代码,保存为.py文件后并运行该脚本,而在Command Line上运行多行代码只能一行接着一行输入并按回车输出,显得十分繁琐。运行Python脚本实际上也是按顺序运行每行的代码,运行脚本后将回到Python GUI界面,这时候Python已经存储脚本运行后的数据,我们可以在界面上继续输入代码,如图1-15所示。本书的代码都会放在Python脚本中,方便读者阅读和运行。

82587f8703de38f7d97e308e10812224e027fc30


图1-15 Python GUI脚本界面
3.第三方Python IDE
IDE是集成开发环境(Integrated Development Environment)的英文简称。而第三方IDE通常聚合了更强大的功能,包括代码版本管理、项目代码管理、代码自动补全等。PyCharm就是这样一个跨平台的、多功能的集成开发环境,主要分为免费社区版(见图1-16)和付费商业版。


a9e9f6b48cc8fb4bba9e123d3cc3daaebf9f5c96


如图1-17所示,在选择创建项目以及确定项目存储路径之后,我们能看到一个清晰简洁的界面。左侧栏是项目管理窗口,负责组织Python实现的项目中所涉及的全部代码和数据文件。右边是正式的编辑区。在选择创建新的Python File之后,将能配合内置的自动补全、代码提示、调试运行功能进行代码的编辑、改正和优化。同时,它还能自动结合Git进行代码版本控制。有兴趣的读者可以自行查找资料。当我们需要做一个大型项目,代码量较多时,用带`` 有项目管理功能的PyCharm会更加方便。


2261817f0d6f0dc7e1e4ae117bea0652b80295fa


1.3.3 与读者的约定`javascript

`

1.排版格式说明
本书的示例代码格式分为两种,一种是Python IDLE的命令行代码,带有“>>>”。命令行代码可能马上会返回结果,这个结果会紧贴在命令行代码的下一行,结果的输出不带有“>>>”。
例如:

x = 1
x

1
另一种格式是带有上下分隔线的代码清单,这种格式用于展示某个完整的知识点。为读者阅读方便,当代码清单出现输出语句时,我们都把输出结果放在下一行,并用注释“# result:”标示 。如代码清单1-1所示:
代码清单1-1 某个知识点

print 1

result: 1

print 'Hello Python'

result:

Hello Python
其中“1-1”表示第1章第1个代码清单。为了叙述方便,一个完整的程序可能被拆分到多个代码清单中,在同一小节中的后续代码中,有可能会沿用先前已声明的变量。
2.示例代码使用说明
本书默认支持的Python版本为2.7.11,其中书中讲解的模块对应的版本号如表1-1所示。
本书附件资源按照章节组织,在代码附件的目录下会有第1章、第2章、第3章等子章节目录。在章节目录下包含了2个文件夹:“示例程序”文件夹和“上机实验”文件夹。“示例程序”文件夹包含3个子目录:code、data、tmp。其中,code包含正文中每个章节的全部代码清单;data包含代码清单中所使用的数据文件;tmp文件夹中包含示例程序运行的结果文件。在部分章节中,上述3个文件夹可能为空。“上机实验”文件夹主要针对每章最后的上机实验,给出了上机实验的参考答案。其子目录结构与示例程序一致。
读者下载附件资源后,直接使用Python运行对应的代码脚本(.py)即可观察结果。值得注意的是,使用Anaconda的读者只需保持目录结构即可完整运行程序,自行安装Python的读者,请确保你的模块版本与表1-1一致。


32b74419a57e7ce7037adeca0412a9c9689d3875
相关文章
|
2天前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
|
1月前
|
数据采集 JSON 测试技术
如何在Python中高效实现CSV到JSON的数据转换
在实际项目中,数据格式转换是常见问题,尤其从CSV到JSON的转换。本文深入探讨了多种转换方法,涵盖Python基础实现、数据预处理、错误处理、性能优化及调试验证技巧。通过分块处理、并行处理等手段提升大文件转换效率,并介绍如何封装为命令行工具或Web API,实现自动化批量处理。关键点包括基础实现、数据清洗、异常捕获、性能优化和单元测试,确保转换流程稳定高效。
156 83
|
5天前
|
数据库 Python
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
|
23天前
|
JSON API 数据格式
Python 请求微店商品详情数据 API 接口
微店开放平台允许开发者通过API获取商品详情数据。使用Python请求微店商品详情API的主要步骤包括:1. 注册并申请API权限,获得app_key和app_secret;2. 确定API接口地址与请求参数,如商品ID;3. 生成签名确保请求安全合法;4. 使用requests库发送HTTP请求获取数据;5. 处理返回的JSON格式响应数据。开发时需严格遵循微店API文档要求。
|
10天前
|
Java API Docker
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
|
19天前
|
数据采集 XML 存储
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
|
1月前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
102 6
从零开始:用Python爬取网站的汽车品牌和价格数据
|
21天前
|
JSON 监控 API
python语言采集淘宝商品详情数据,json数据示例返回
通过淘宝开放平台的API接口,开发者可以轻松获取商品详情数据,并利用这些数据进行商品分析、价格监控、库存管理等操作。本文提供的示例代码和JSON数据解析方法,可以帮助您快速上手淘宝商品数据的采集与处理。
|
1月前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
61 12
|
27天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!