《TensorFlow技术解析与实战》—— 2.2 基于pip的安装

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 本节书摘来自异步社区《TensorFlow技术解析与实战》一书中的第2章,第2.2节,作者李嘉璇,更多章节内容可以访问云栖社区“异步社区”公众号查看 第2章 TensorFlow环境的准备 2.2  基于pip的安装 pip是Python的包管理工具,主要用于PyPI[2](Python Packet Index)上的包。

本节书摘来自异步社区《TensorFlow技术解析与实战》一书中的第2章,第2.2节,作者李嘉璇,更多章节内容可以访问云栖社区“异步社区”公众号查看

2.2  基于pip的安装

pip是Python的包管理工具,主要用于PyPI[2](Python Packet Index)上的包。命令简洁方便,包种类丰富,社区完善,并且拥有轻松升级/降级包的能力。

2.2.1 Mac OS环境准备
Mac OS是本书所讲内容依赖的环境,机器配置如图2-3所示。

1

图2-3

首先需要依赖Python环境,以及pip命令。这在Mac和Linux系统中一般都有。这里使用的Python版本是2.7.12。TensorFlow 1.1.0版本兼容Python 2和Python 3,读者可以用适合自己的Python环境。

1.安装virtualenv
virtualenv是Python的沙箱工具,用于创建独立的Python环境。我们毕竟是在自己机器上做实验,为了不来回修改各种环境变量,这里用virtualenv为TensorFlow创建一套“隔离”的Python运行环境。

首先,用pip安装virtualenv:

$ pip install virtualenv --upgrade
安装好后创建一个工作目录,这里直接在home下创建了一个tensorflow文件夹:

$ virtualenv --system-site-packages ~/tensorflow
然后进入该目录,激活沙箱:

$ cd ~/tensorflow
$ source bin/activate 
(tensorflow) $

2.在virtualenv里安装TensorFlow
进入沙箱后,执行下面的命令来安装TensorFlow:

(tensorflow) $ pip install tensorflow==1.1.0
默认安装所需的依赖,直至安装成功。

3.运行TensorFlow
照着官方文档录入一个简单例子:

(tensorflow) $ python
Python 2.7.12 (default, Oct 11 2016, 05:16:02)
[GCC 4.2.1 Compatible Apple LLVM 7.0.2 (clang-700.1.81)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> import tensorflow as tf
>>> hello = tf.constant('Hello,TensorFlow!')
>>> sess = tf.Session()
>>> print sess.run(hello)
Hello, TensorFlow!

恭喜,TensorFlow环境已经安装成功了。

注意,每次需要运行TensorFlow程序时,都需要进入tensorflow目录,然后执行source bin/activate命令来激活沙箱。

2.2.2 Ubuntu/Linux环境准备
使用Ubuntu/Linux的读者可以照着Mac OS的环境准备,先安装virtualenv的沙盒环境,再用pip安装TensorFlow软件包。

TensorFlow的Ubuntu/Linux安装分为CPU版本和GPU版本,下面来分别介绍。

(1)安装仅支持CPU的版本,直接安装如下:

``
$ pip install tensorflow==1.1.0``
(2)安装支持GPU的版本的前提是已经安装了CUDA SDK,直接使用下面的命令:

$ pip install tensorflow-gpu==1.1.0
2.2.3 Windows环境准备
TensorFlow 1.1.0版本支持Windows 7、Windows 10和Server 2016。因为使用Windows PowerShell代替CMD,所以下面的命令均在PowerShell下执行。这里使用的是Windows 10系统,使用微软小娜呼唤出PowerShell,如图2-4所示。

2

图2-4

1.安装Python
TensorFlow在Windows上只支持64位Python 3.5.x,可以通过Python Releases for Windows[3]或Python 3.5 from Anaconda下载并安装Python 3.5.2(注意选择正确的操作系统)。下载后,安装界面如图2-5所示,注意勾选“Add Python 3.5 to PATH”。

3

图2-5

选择Customize installation(自定义安装),进入下一步。如图2-6所示,可以看出Python包自带pip命令。

4

图2-6

然后,等待安装完成,再到PowerShell中输入python,看到进入终端的命令提示则代表python安装成功。在“开始”->“所有程序”下也可以找到Python终端。安装成功后的界面如图2-7所示。

5

图2-7

TensorFlow的Windows安装也分为CPU版本和GPU版本,下面来分别介绍。

(1)CPU版本安装。在PowerShell中执行如下命令,默认安装TensorFlow 1.1.0版本及相关依赖。

C:\> pip install tensorflow==1.1.0
安装完成后如图2-8所示。

6

图2-8

(2)GPU版本安装。如果读者的机器支持安装GPU版本,请先安装如下两个驱动:CUDA[4]和CuDNN[5](后者需要注册NVIDIA用户,并加入CuDNN开发组,然后填若干问卷,才可以下载)。选择下载版本时要注意与CUDA版本匹配。解压后保存至CUDA的安装目录下。然后,安装GPU版本,安装命令如下:

C:\> pip install tensorflow-gpu==1.1.0
2.运行TensorFlow
在微软小娜中,搜索“python”,直接模糊匹配,调出命令窗口,输入测试代码:

>>>import tensorflow as tf  
>>>sess = tf.Session()  
>>>a = tf.constant(10)  
>>>b = tf.constant(22)  
>>>print(sess.run(a + b)) 
32```
相关文章
|
2月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
5059 3
|
2天前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
1月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
67 5
|
2月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
134 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
93 0
|
2月前
|
并行计算 TensorFlow 算法框架/工具
tensorflow安装
tensorflow安装——GPU版
59 2
|
2月前
|
并行计算 PyTorch TensorFlow
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
这篇文章详细介绍了如何在Anaconda环境下安装和配置深度学习所需的库和工具,包括PyTorch 1.6.0、CUDA 10.0、cuDNN 7.6.4、TensorFlow 1.15、pycocotools和pydensecrf,并提供了pip国内镜像源信息以及Jupyter Notebook和Anaconda的基本操作。
232 0
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
|
2月前
|
SQL 安全 Windows
SQL安装程序规则错误解析与解决方案
在安装SQL Server时,用户可能会遇到安装程序规则错误的问题,这些错误通常与系统配置、权限设置、依赖项缺失或版本不兼容等因素有关
|
2月前
|
Python
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
169 3
|
2月前
|
自然语言处理 搜索推荐 程序员
【Python】如何使用pip,安装第三方库和生成二维码、操作Excel
【Python】如何使用pip,安装第三方库和生成二维码、操作Excel
76 0

热门文章

最新文章

推荐镜像

更多