我在组内的Java问题排查分享

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 可从三个方面入手知识:有些问题,思考一下就有答案,就像传说中多隆那样,回忆下就知道第83行代码有问题~工具:当然不是每个人都能做到过目不忘,也有可能这代码完全不是你写的,这时就需要靠工具来定位问题数据:程序运行时产生的数据,也能提供很多线索

前言


最近翻看以前写的 PPT, 发现了在2019年做的一次技术分享,关于 Java 问题排查,由于没什么公司机密可言,整理下分享给大家~


线上问题处理流程


直接放PPT截图吧,现在看来依然不过时


2379072-20211201191836709-870940766.png

问题排查


可从三个方面入手


  • 知识:有些问题,思考一下就有答案,就像传说中多隆那样,回忆下就知道第83行代码有问题~
  • 工具:当然不是每个人都能做到过目不忘,也有可能这代码完全不是你写的,这时就需要靠工具来定位问题
  • 数据:程序运行时产生的数据,也能提供很多线索


知识


知识有很多方面,这里简单列举一下:


  • 语言(本文特指 Java):如 JVM 知识、多线程知识等
  • 框架:如 Dubbo、Spring 等
  • 组件:如 Mysql、RocketMq 等
  • 其他:如网络、操作系统等


举个例子,我们需要理解 Java 对象从申请到被回收整个过程,这个图非常清晰,建议烂熟于心:


2379072-20211201191844122-1733086926.png


然后也要了解常见的垃圾收集器


2379072-20211201191849799-2126579672.png


吞吐量=单位时间内处理的请求数量=运行代码时间 / (运行代码时间 + 垃圾回收时间)

以 ParNew + CMS 为例 ,尝试回答如下几个问题:


  • 为什么要分代收集?— 关键字:效率
  • 对象什么时候进入老年代?— 关键字:年龄、大小
  • Young GC 与 Full GC 什么时候发生?— 关键字:Eden 不足、Old 不足、Meta 不足、map/System.gc


如果我们了解上述的这些知识后,举个实际例子,当我们发现 Young GC 频繁触发,耗时高,该如何优化?


首先思考,Young GC 什么时候触发?答案是 Eden 区不足。


接着,Young GC 耗时主要是哪里耗时?答案是扫描 + 复制,扫描通常很快,复制比较慢。


那我们对症下药,增加新生代大小试试,结果真的解决问题了,为什么?我们也分析一下

新生代大小为 M 时,假设对象存活 750ms,young GC间隔 500ms,扫描时间为 T1,复制时间为 T2


  • 新生代大小为 M 时:频率 2次/s,每次耗时 T1 + T2
  • 新生代扩大为 2M 时:频率 1次/s,每次耗时 2T1


由于T2远远大于T1,所以2T1 < T1 + T2


这就是知识的力量~


工具


Java 栈中的工具,也分为这几类:

  • JDK 自带:如 jstat、jstack、jmap、jconsole、jvisualvm
  • 第三方:MAT(eclipse插件)、GCHisto、GCeasy(在线GC日志分析工具,https://gceasy.io/)
  • 开源:大名鼎鼎的Arthas、bistoury(去哪网开源)、Async-profiler

这些工具的原理,我们也需要稍微了解下,比如 Cpu profiler大概有两类:

  • 基于采样:优点是性能开销低,缺点是采样有频率限制,存在SafePoint Bias问题
  • 插桩:所有方法添加 AOP 逻辑,优点是精准采集,缺点是性能开销高


比如 uber 开源的 uber-common/jvm-profiler,它就是基于采样的 Cpu profiler,缺点就是存在 SafePoint Bias 问题,比如有一次排查一个 Cpu 占用问题,就采集到了这样的火焰图,可以看到几乎没啥用


SafePoint(安全点) 可以简单理解为 JVM 可以停顿下来的特定位置的点,如果采样的位置是特定的点,那么采样就不具有代表性,因为可能在非 SafePoint 时可能消耗了更多的 Cpu,这种现象就被称为 SafePoint Bias 问题。


2379072-20211201191858250-1587662364.png


但我用另一个 jvm-profiling-tools/async-profiler 来采集,就能看到性能瓶颈:


2379072-20211201191905839-1662868579.png


虽然 Async-profiler 也是基于采样做,但它能避免 SafePoint Bias 问题,原因是它采用了 AsyncGetCallTrace 的黑科技。于是依据 Async-profiler 给出的火焰图进行优化,Qps 从 58k 涨到 81k,Cpu 反而从72%下降到了41%


2379072-20211201191912970-614210322.png


数据


数据包括:


  • 监控数据,如APM、metric、JVM监控、分布式链路追踪等等数据
  • 程序运行数据:如业务数据、AccessLog、GC log、系统日志等


这部分就按实际来分析,没有统一模板可言。


经验


说了这么多,从经验角度总结了如下常见问题该从哪些方面入手:


  • 执行异常:查看日志、debug、请求重放
  • 应用僵死:jstack
  • 耗时高:trace跟踪、Benchmark
  • Cpu利用率高:Cpu profile分析
  • GC频繁、耗时高:GC log分析
  • OOM、内存占用高、泄漏:dump内存分析


案例分享


Cobar僵死,进程端口在,但不能处理请求


先踢掉故障机器,保留现场再排查问题,根据日志,定位为内存泄漏


2379072-20211201191921296-1018503050.png


小思考:能通过日志直接确定是哪里内存泄露吗?— 答案:不能


具体定位可dump内存下载到本地分析,文件如果太大,可以先压缩下

jmap -dump:format=b,file=/cobar.bin ${pid}


使用 eclipse 的插件 MAT 分析,过程就不放了,结果是发现了一个我们对 Cobar 自定义修改导致的 Bug,如果对内存分析感兴趣,可以直接看我这几篇实战文章:



网关耗时高


使用 Arthas trace 跟踪调用


2379072-20211201191929049-983791341.png


接入 Sentinel 导致应用僵死


接入限流降级利器 Sentinel 后,配置一条规则,触发后导致应用僵死,可使用 jstack 进行排查,一眼就看出问题所在


2379072-20211201191937277-1608351686.png


最后


本文最早分享于2019年12月,刚好过去2年,由于是 PPT 整理而来,行文没有那么丝滑,但问题排查的思路、手段依然是这些,大家学废了吗?





相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
4月前
|
Java 数据库连接
Java中的内存泄漏排查与预防方法
Java中的内存泄漏排查与预防方法
|
6月前
|
SQL 网络协议 Java
Java开发者的必备技能:抓包工具排查问题
Java开发者的必备技能:抓包工具排查问题
307 0
|
SQL 关系型数据库 MySQL
Java 最常见的面试题:mysql 问题排查都有哪些手段?
Java 最常见的面试题:mysql 问题排查都有哪些手段?
|
2月前
|
缓存 JavaScript Java
常见java OOM异常分析排查思路分析
Java虚拟机(JVM)遇到内存不足时会抛出OutOfMemoryError(OOM)异常。常见OOM情况包括:1) **Java堆空间不足**:大量对象未被及时回收或内存泄漏;2) **线程栈空间不足**:递归过深或大量线程创建;3) **方法区溢出**:类信息过多,如CGLib代理类生成过多;4) **本机内存不足**:JNI调用消耗大量内存;5) **GC造成的内存不足**:频繁GC但效果不佳。解决方法包括调整JVM参数(如-Xmx、-Xss)、优化代码及使用高效垃圾回收器。
141 15
常见java OOM异常分析排查思路分析
|
4月前
|
监控 Java
Java中的内存泄漏分析与排查技巧
Java中的内存泄漏分析与排查技巧
|
2月前
|
缓存 JavaScript Java
常见java OOM异常分析排查思路分析
Java虚拟机(JVM)遇到 OutOfMemoryError(OOM)表示内存资源不足。常见OOM情况包括:1) **Java堆空间不足**:内存被大量对象占用且未及时回收,或内存泄漏;解决方法包括调整JVM堆内存大小、优化代码及修复内存泄漏。2) **线程栈空间不足**:单线程栈帧过大或频繁创建线程;可通过优化代码或调整-Xss参数解决。3) **方法区溢出**:运行时生成大量类导致方法区满载;需调整元空间大小或优化类加载机制。4) **本机内存不足**:JNI调用或内存泄漏引起;需检查并优化本机代码。5) **GC造成的内存不足**:频繁GC但效果不佳;需优化JVM参数、代码及垃圾回收器
常见java OOM异常分析排查思路分析
|
3月前
|
小程序 JavaScript Java
【Java】服务CPU占用率100%,教你用jstack排查定位
本文详细讲解如何使用jstack排查定位CPU高占用问题。首先介绍jstack的基本概念:它是诊断Java应用程序线程问题的工具,能生成线程堆栈快照,帮助找出程序中的瓶颈。接着,文章通过具体步骤演示如何使用`top`命令找到高CPU占用的Java进程及线程,再结合`jstack`命令获取堆栈信息并进行分析,最终定位问题代码。
292 1
【Java】服务CPU占用率100%,教你用jstack排查定位
|
6月前
|
缓存 算法 安全
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(二)
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍
63 0
|
6月前
|
缓存 Java C#
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(一)
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍
153 0
|
4月前
|
Prometheus 监控 Cloud Native
Java 服务挂掉,服务器异常宕机问题排查
Java 服务挂掉,服务器异常宕机问题排查
838 1