深度学习导论及案例分析》一2.3信息论的基本概念

简介: #### 本节书摘来自华章出版社《深度学习导论及案例分析》一书中的第1章,第1.1节,作者李玉鑑 张婷,更多章节内容可以访问云栖社区“华章计算机”公众号查看。 2.3信息论的基本概念 一般认为,信息论开始于1948年香农(Claude Elwood Shannon)发表的论文《通信的数学原理》[96]。

#### 本节书摘来自华章出版社《深度学习导论及案例分析》一书中的第2章,第2.3节,作者李玉鑑 张婷,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.3信息论的基本概念

一般认为,信息论开始于1948年香农(Claude Elwood Shannon)发表的论文《通信的数学原理》[96]。熵(entropy)是信息论的一个基本概念。

离散随机变量X的熵定义为
H(X)=∑x∈val(X)P(x)logP(x)(2.45)
两个离散随机变量X和Y的联合熵(joint entropy)定义为
H(X,Y)=∑x∈val(X)∑y∈val(Y)P(x,y)logP(x,y)(2.46)
在给定随机变量X的情况下,随机变量Y的条件熵(conditional entropy)定义为
H(YX)=∑x∈val(X)P(x)H(YX=x)=∑x∈val(X)P(x)-∑y∈val(Y)P(yx)logP(yx)

=-∑x∈val(X)∑y∈val(Y)P(x,y)logP(x,y)(2.47)
关于联合熵和条件熵,有熵的链式法则(chain rule for entropy),即
H(X,Y)=H(X)+H(YX)(2.48)

H(X1,X2,…,Xn)=H(X1)+H(X2X1)+…+H(XnX1,…,Xn-1)(2.49)
两个随机变量X和Y的互信息定义为
I(X,Y)=H(X)-H(YX)=H(X)+H(Y)-H(X,Y)

=∑x,yP(x,y)logP(x,y)P(x)P(y)≥0(2.50)
两个概率分布P(X)和Q(X)的KL散度(KullbackLeibler divergence),又称相对熵,定义为
KL(PQ)=∑x∈val(X)P(x)logP(x)Q(x)=EPP(x)Q(x)(2.51)
显然,当两个概率分布完全相同,即P=Q时,其相对熵为0。当两个概率分布的差别增加时,其相对熵将增大。此外,联合相对熵和条件相对熵也存在所谓的链式法则:
KL(P(X,Y)Q(X,Y))=KL(P(X)Q(X))+KL(P(YX)Q(YX))(2.52)
如果用模型分布Q(X)来近似一个未知概率分布P(X),那么还可以用交叉熵(cross entropy)来表达模型分布对未知分布的逼近程度:
CE(P,Q)=H(X)+KL(PQ)=-∑x∈val(X)P(x)logQ(x)=EPlog1Q(x)(2.53)
相关文章
|
8天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
99 70
|
10天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
110 68
|
5天前
|
机器学习/深度学习 算法 安全
从方向导数到梯度:深度学习中的关键数学概念详解
方向导数衡量函数在特定方向上的变化率,其值可通过梯度与方向向量的点积或构造辅助函数求得。梯度则是由偏导数组成的向量,指向函数值增长最快的方向,其模长等于最速上升方向上的方向导数。这两者的关系在多维函数分析中至关重要,广泛应用于优化算法等领域。
54 36
从方向导数到梯度:深度学习中的关键数学概念详解
|
6天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
71 36
|
4天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
42 18
|
16天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
42 8
|
1月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
43 7
|
7天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在医疗影像分析中的应用与挑战
本文探讨了深度学习技术在医疗影像分析领域的应用现状和面临的主要挑战。随着人工智能技术的飞速发展,深度学习已经成为推动医疗影像诊断自动化和智能化的重要力量。文章首先概述了深度学习的基本原理及其在图像识别任务中的优势,随后详细讨论了其在CT、MRI等医疗影像处理中的成功案例,并分析了当前技术面临的数据隐私、模型解释性以及临床验证等方面的挑战。最后,提出了未来研究的方向和可能的解决方案,旨在促进深度学习技术在医疗领域的更广泛应用。
19 0
|
2月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
238 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
13天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
30 0