Redis全称Remote DIctionary Server
数据结构
- string
- hash
- list
- set
- sortedset
持久化
- RDB Redis DataBase(简称RDB)
- AOF Append-only file (简称AOF)
RDB 持久化机制,是对 redis 中的数据执行周期性的持久化。
AOF:AOF 机制对每条写入命令作为日志,以 append-only
的模式写入一个日志文件中,在 redis 重启的时候,可以通过回放 AOF 日志中的写入指令来重新构建整个数据集。
RDB 和 AOF 到底该如何选择?
- 不要仅仅使用 RDB,因为那样会导致你丢失很多数据;
- 也不要仅仅使用 AOF,因为那样有两个问题:第一,你通过 AOF 做冷备,没有 RDB 做冷备来的恢复速度更快;第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug;
- redis 支持同时开启开启两种持久化方式,我们可以综合使用 AOF 和 RDB 两种持久化机制,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 用 RDB 来做不同程度的冷备,在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复。
如果突然机器掉电会怎样?
取决于aof日志sync属性的配置,如果不要求性能,在每条写指令时都sync一下磁盘,就不会丢失数据。但是在高性能的要求下每次都sync是不现实的,一般都使用定时sync,比如1s1次,这个时候最多就会丢失1s的数据。
redis 数据淘汰策略
- volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
- volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
- volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
- allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
- allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
- no-enviction(驱逐):禁止驱逐数据
默认的内存策略是noeviction, 不删除任意数据(但redis还会根据引用计数器进行释放呦~),这时如果内存不够时,会直接返回错误
客户端与 redis 的一次通信过程
- 首先,redis 服务端进程初始化的时候,会将 server socket 的
AE_READABLE
事件与连接应答处理器关联。客户端 socket01 向 redis 进程的 server socket 请求建立连接,此时 server socket 会产生一个AE_READABLE
事件,IO 多路复用程序监听到 server socket 产生的事件后,将该 socket 压入队列中。文件事件分派器从队列中获取 socket,交给连接应答处理器。连接应答处理器会创建一个能与客户端通信的 socket01,并将该 socket01 的AE_READABLE
事件与命令请求处理器关联。
- 假设此时客户端发送了一个
set key value
请求,此时 redis 中的 socket01 会产生AE_READABLE
事件,IO 多路复用程序将 socket01 压入队列,此时事件分派器从队列中获取到 socket01 产生的AE_READABLE
事件,由于前面 socket01 的AE_READABLE
事件已经与命令请求处理器关联,因此事件分派器将事件交给命令请求处理器来处理。命令请求处理器读取 socket01 的key value
并在自己内存中完成key value
的设置。操作完成后,它会将 socket01 的AE_WRITABLE
事件与命令回复处理器关联。
- 如果此时客户端准备好接收返回结果了,那么 redis 中的 socket01 会产生一个
AE_WRITABLE
事件,同样压入队列中,事件分派器找到相关联的命令回复处理器,由命令回复处理器对 socket01 输入本次操作的一个结果,比如ok
,之后解除 socket01 的AE_WRITABLE
事件与命令回复处理器的关联。
这样便完成了一次通信。关于 Redis 的一次通信过程
高可用
master/slave + 哨兵 Sentinel
单机的 redis,能够承载的 QPS 大概就在上万到几万不等。对于缓存来说,一般都是用来支撑读高并发的。因此架构做成主从(master-slave)架构,一主多从,主负责写,并且将数据复制到其它的 slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。
redis 的高可用架构,叫做 failover
故障转移,也可以叫做主备切换。
master node 在故障时,自动检测,并且将某个 slave node 自动切换为 master node 的过程,叫做主备切换。
sentinel,中文名是哨兵。哨兵是 redis 集群架构中非常重要的一个组件,主要有以下功能:
- 集群监控:负责监控 redis master 和 slave 进程是否正常工作。
- 消息通知:如果某个 redis 实例有故障,那么哨兵负责发送消息作为报警通知给管理员。
- 故障转移:如果 master node 挂掉了,会自动转移到 slave node 上。
- 配置中心:如果故障转移发生了,通知 client 客户端新的 master 地址。
Redis Cluster
- Redis Cluster是社区版推出的Redis分布式集群解决方案,主要解决Redis分布式方面的需求,比如,当遇到单机内存,并发和流量等瓶颈的时候,Redis Cluster能起到很好的负载均衡的目的。
- Redis Cluster集群节点最小配置6个节点以上(3主3从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。
- Redis Cluster采用虚拟槽分区,所有的键根据哈希函数映射到0~16383个整数槽内,每个节点负责维护一部分槽以及槽所映射的键值数据。
- 自动将数据进行分片,每个 master 上放一部分数据
- 提供内置的高可用支持,部分 master 不可用时,还是可以继续工作的
集群由N组主从Redis Instance组成。主可以没有从,但是没有从 意味着主宕机后主负责的Slot读写服务不可用。一个主可以有多个从,主宕机时,某个从会被提升为主,具体哪个从被提升为主,协议类似于Raft。
如何检测主宕机?Redis Cluster采用quorum+心跳的机制。从节点的角度看,节点会定期给其他所有的节点发送Ping,cluster-node-timeout(可配置,秒级)时间内没有收到对方的回复,则单方面认为对端节点宕机,将该节点标为PFAIL状态。通过节点之间交换信息收集到quorum个节点都认为这个节点为PFAIL,则将该节点标记为FAIL,并且将其发送给其他所有节点,其他所有节点收到后立即认为该节点宕机。从这里可以看出,主宕机后,至少cluster-node-timeout时间内该主所负责的Slot的读写服务不可用。
Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。
Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。
缓存穿透
对于系统A,假设一秒 5000 个请求,结果其中 4000 个请求是黑客发出的恶意攻击。
黑客发出的那 4000 个攻击,缓存中查不到,每次你去数据库里查,也查不到。
举个栗子。数据库 id 是从 1 开始的,结果黑客发过来的请求 id 全部都是负数。这样的话,缓存中不会有,请求每次都“视缓存于无物”,直接查询数据库。这种恶意攻击场景的缓存穿透就会直接把数据库给打死。
缓存击穿
缓存击穿,就是说某个 key 非常热点,访问非常频繁,处于集中式高并发访问的情况,当这个 key 在失效的瞬间,大量的请求就击穿了缓存,直接请求数据库,就像是在一道屏障上凿开了一个洞。
缓存雪崩
对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机。缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了。此时,如果没有采用什么特别的方案来处理这个故障,DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了。
缓存雪崩的事前事中事后的解决方案如下:
- 事前:redis 高可用,主从+哨兵,redis cluster,避免全盘崩溃。
- 事中:本地 ehcache 缓存 + hystrix 限流&降级,避免 MySQL 被打死。
- 事后:redis 持久化,一旦重启,自动从磁盘上加载数据,快速恢复缓存数据。
Cache Aside Pattern
最经典的缓存+数据库读写的模式,就是 Cache Aside Pattern。
- 读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。
- 更新的时候,先更新数据库,然后再删除缓存。
Redis的并发竞争问题
Redis的并发竞争问题,主要是发生在并发写竞争。
- 利用redis自带的incr命令 (Redis 的原子性自增操作)
- 使用乐观锁的方式进行解决(成本较低,非阻塞,性能较高)redis 的命令 watch
- 利用redis的setnx实现内置的锁。
- zookeeper分布式锁
- 利用消息队列:可以通过消息中间件进行处理,把并行读写进行串行化
分区分片
客户端分片
代理分片,中件间
Redis Cluster
为什么 redis 单线程模型也能效率这么高?
- 纯内存操作。
- 核心是基于非阻塞的 IO 多路复用机制。
- C 语言实现,一般来说,C 语言实现的程序“距离”操作系统更近,执行速度相对会更快。
- 单线程反而避免了多线程的频繁上下文切换问题,预防了多线程可能产生的竞争问题。
Redis 常见的性能问题都有哪些?如何解决?
1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内
优化redis内存
- 数据淘汰策略
- 优化序列化
- 缩减键值对象
- Redis为列表、集合、散列、有序集合提供了一组配置选项,这些选项可以让redis以更节约的方式存储较短的结构。
与其它框架的比较