34 用enum代替int常量
每当需要一组固定常量,并且在编译时就知道常量分别都是什么时,就要用枚举。
在枚举出现之前,大家都是用int常量来表示枚举类型:
public static final int APPLE_FUJI = 0; public static final int APPLE_PIPPIN = 1; public static final int APPLE_GRANNY_SMITH = 2; public static final int ORANGE_NAVEL = 0; public static final int ORANGE_TEMPLE = 1; public static final int ORANGE_BLOOD = 2;
上述做法有很多不足:
1. 不安全且没有任何描述性
如果将apple传入了想要orange的方法里,不会报错,还会用==运算符比较 Apple 与 Orange
2. 使用int 枚举的程序很脆弱
因为 int 枚举是编译时常量,所以它们的int 值被编译到使用它们的客户端中,如果与int 枚举关联的值发生更改,则必须重新编译其客户端
3. 很难将 int 枚举常量转换为可打印的字符串
就算将其打印出来了,所看到的也只是一个数字,没什么意义
4. 没有可靠的方法来遍历所有 int 枚举常量
除了int枚举模式之外,还有String枚举模式(String enum pattern),它同样也有很多缺点:
1. 导致初级用户将字符串常量硬编码到客户端代码中,就是常说的魔法值
2. 会依赖字符串的比较操作故有很大的性能问题
Java提供的枚举类型可以很好的解决上面的问题:
public enum Apple { FUJI, PIPPIN, GRANNY_SMITH } public enum Orange { NAVEL, TEMPLE, BLOOD }
Java的枚举本质上是int值,思想非常简单:通过public static final属性为每个枚举常量导出一个实例。由于没有可访问的构造方法,枚举类型实际上是 final 的。客户既不能创建枚举类型的实例也不能继承它,除了声明的枚举常量外,不能有任何实例。
有以下几条优点:
1. 保证了编译时的类型安全
如果声明参数的类型为Apple,它就能保证传到该参数上的任何非空的对象引用一定是FUJI,PIPPIN,GRANNY_SMITH之一
2. 具有相同名称常量的多个枚举类型可以共存
因为每个类都有其自己的名称空间
3. 枚举类型还允许添加任意方法和属性并实现任意接口
提供了所有 Object 方法,实现了Comparable 和 Serializable 接口
比如太阳系的八颗行星,每个行星都有质量和半径,从这两个属性可以计算出它的表面重力
每个枚举常量之后的括号中的数字是传递给其构造方法的参数
package com.wjw.effectivejava1; public enum Planet { MERCURY(3.302e+23, 2.439e6), VENUS(4.869e+24, 6.052e6), EARTH(5.975e+24, 6.378e6), MARS(6.419e+23, 3.393e6), JUPITER(1.899e+27, 7.149e7), SATURN(5.685e+26, 6.027e7), URANUS(8.683e+25, 2.556e7), NEPTUNE(1.024e+26, 2.477e7); private final double mass; // In kilograms private final double radius; // In meters private final double surfaceGravity; // In m / s^2 // Universal gravitational constant in m^3 / kg s^2 private static final double G = 6.67300E-11; // Constructor Planet(double mass, double radius) { this.mass = mass; this.radius = radius; surfaceGravity = G * mass / (radius * radius); } public double mass() { return mass; } public double radius() { return radius; } public double surfaceGravity() { return surfaceGravity; } public double surfaceWeight(double mass) { return mass * surfaceGravity; // F = ma } }
可以根据物体在地球上的重量,打印出该物体在所有8颗行星上的重量:
public class WeightTable { public static void main(String[] args) { double earthWeight = Double.parseDouble(args[0]); double mass = earthWeight / Planet.EARTH.surfaceGravity(); for (Planet p : Planet.values()) System.out.printf("Weight on %s is %f%n", p, p.surfaceWeight(mass)); } }
运行结果:
如果一个枚举具有普适性,他就应该成为一个顶层类,如果他只是被用在一个特定的顶层类里,他就应该成为该顶级类的
成员类,例如java.math.RoundingMode表示小数部分的舍入模式。BigDecimal类使用了这些舍入模式,但他们却不属于BigDecimal类的一个抽象。让RoundingMode成为一个顶层类,以鼓励让任何需要舍入模式的程序员重用。
有时我们需要更多的方法,加入正在编写一个枚举类,表示计算器的加减乘除操作,还需要提供一个方法来执行每个常量所表示的运算:
public enum Operation { PLUS, MINUS, TIMES, DIVIDE; // Do the arithmetic operation represented by this constant public double apply(double x, double y) { switch (this) { case PLUS: return x + y; case MINUS: return x - y; case TIMES: return x * y; case DIVIDE: return x / y; } throw new AssertionError("Unknown op: " + this); } }
这段代码能用,但不优雅,如果添加了新的枚举常量,却忘记给switch添加相应的条件就会失败。
有一种更好的方法可以将不同的行为与每个枚举常量关联起来:在枚举类型中声明一个抽象的apply方法,并在特定于常量的类主体(constant-specific class body)。这种方法被称为特定于常量的方法实现(constant-specific method implementation):
public enum Operation { PLUS { public double apply(double x, double y) { return x + y; } }, MINUS { public double apply(double x, double y) { return x - y; } }, TIMES { public double apply(double x, double y) { return x * y; } }, DIVIDE { public double apply(double x, double y) { return x / y; } }; public abstract double apply(double x, double y); }
特定于常量的方法实现可以与特定于常量的数据结合使用。toString 方法返回与操作关联的符号:
public enum Operation { PLUS("+") { public double apply(double x, double y) { return x + y; } }, MINUS("-") { public double apply(double x, double y) { return x - y; } }, TIMES("*") { public double apply(double x, double y) { return x * y; } }, DIVIDE("/") { public double apply(double x, double y) { return x / y; } }; private final String symbol; Operation(String symbol) { this.symbol = symbol; } @Override public String toString() { return symbol; } public abstract double apply(double x, double y); }
上述代码可以很容易地打印算术表达式:
public static void main(String[] args) { double x = Double.parseDouble(args[0]); double y = Double.parseDouble(args[1]); for (Operation op : Operation.values()) System.out.printf("%f %s %f = %f%n", x, op, y, op.apply(x, y)); }
2.000000 + 4.000000 = 6.000000
2.000000 - 4.000000 = -2.000000
2.000000 * 4.000000 = 8.000000
2.000000 / 4.000000 = 0.500000
特定于常量的方法实现有一个美中不足的地方,它们使得在枚举常量中共享代码变得更加困难。例如,考虑用一个枚举代表工资包中的工作天数,根据给定的某工人的基本工资(每小时)和当天工作的时间计算当天工人的工资。
enum PayrollDay { MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY,SATURDAY,SUNDAY; private static final int MINS_PER_SHIFT = 8 * 60; int pay(int minutesWorked, int payRate) { int basePay = minutesWorked * payRate; // 计算基本工资 // 计算加班工资 int overtimePay; switch (this) { case SATURDAY: case SUNDAY: // Weekend overtimePay = basePay / 2; break; default: // Weekday overtimePay = minutesWorked <= MINS_PER_SHIFT ? 0 : (minutesWorked - MINS_PER_SHIFT) * payRate / 2; } return basePay + overtimePay; } }
假设你给枚举添加了一个元素,可能是一个特殊的值来表示一个假期,但忘记在switch 语句中添加一个相应的case 条件。该程序仍然会编译,但付费方法会将节假日的工资算成工作日的工资,原因是走了上面default里的逻辑。
我们真正想要的是每次添加枚举常量时,就自动选择加班费策略:再定义一个嵌套枚举类PayType,并将PayType实例传递给·PayrollDay·枚举的构造方法里。
public enum PayrollDay { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY(PayType.WEEKEND), SUNDAY(PayType.WEEKEND); private final PayType payType; PayrollDay(PayType payType) { this.payType = payType; } PayrollDay() { this(PayType.WEEKDAY); } // Default int pay(int minutesWorked, int payRate) { return payType.pay(minutesWorked, payRate); } // The strategy enum type private enum PayType { WEEKDAY { int overtimePay(int minsWorked, int payRate) { return minsWorked <= MINS_PER_SHIFT ? 0 : (minsWorked - MINS_PER_SHIFT) * payRate / 2; } }, WEEKEND { int overtimePay(int minsWorked, int payRate) { return minsWorked * payRate / 2; } }; abstract int overtimePay(int mins, int payRate); private static final int MINS_PER_SHIFT = 8 * 60; int pay(int minsWorked, int payRate) { int basePay = minsWorked * payRate; return basePay + overtimePay(minsWorked, payRate); } } }
枚举的switch语句适合于给外部的枚举类型增加和常量值对应行为。
假设希望 Operation 枚举有一个实例方法来返回每个相反的操作。
public static Operation inverse(Operation op) { switch(op) { case PLUS: return Operation.MINUS; case MINUS: return Operation.PLUS; case TIMES: return Operation.DIVIDE; case DIVIDE: return Operation.TIMES; default: throw new AssertionError("Unknown op: " + op); } }
35 用实际属性代替序数
许多枚举天生就与某个 int 值关联。所以枚举都有一个ordinal方法,返回每个枚举常量在类型中的数字位置。
public enum Ensemble { SOLO, DUET, TRIO, QUARTET, QUINTET, SEXTET, SEPTET, OCTET, NONET, DECTET; public int numberOfMusicians() { return ordinal() + 1; } }
这段代码维护起来就是一场噩梦,如果上面常量的顺序变了,所有用到numberOfMusicians
的地方都会返回一个不同的值。所以永远不要根据枚举的序数导出与它关联的值,而是要将它保存在一个实例属性中:
public enum Ensemble { SOLO(1), DUET(2), TRIO(3), QUARTET(4), QUINTET(5), SEXTET(6), SEPTET(7), OCTET(8), DOUBLE_QUARTET(8), NONET(9), DECTET(10), TRIPLE_QUARTET(12); private final int numberOfMusicians; Ensemble(int size) { this.numberOfMusicians = size; } public int numberOfMusicians() { return numberOfMusicians; } }
实际上,ordinal的目的是用于基于枚举的通用数据结构,如 EnumSet 和 EnumMap,除了在编写这种数据结构时可以用,其他时候都不要用。