SpringloC容器的依赖注入源码解析(6)—— doCreateBean之处理@Autowired以及@Value标签

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 进入到上面的applyMergedBeanDefinitionPostProcessors方法里:

文章目录

进入到上面的applyMergedBeanDefinitionPostProcessors方法里:


protected void applyMergedBeanDefinitionPostProcessors(RootBeanDefinition mbd, Class<?> beanType, String beanName) {
   for (BeanPostProcessor bp : getBeanPostProcessors()) {
      if (bp instanceof MergedBeanDefinitionPostProcessor) {
         MergedBeanDefinitionPostProcessor bdp = (MergedBeanDefinitionPostProcessor) bp;
         // 重点关注AutowiredAnnotationBeanPostProcessor,该类会把@Autowired等标记的
         // 需要依赖注入的成员变量或者方法实例给记录下来,方便后续populateBean使用
         bdp.postProcessMergedBeanDefinition(mbd, beanType, beanName);
      }
   }
}


其中实现了postProcessMergedBeanDefinition方法的一个实现类MergedBeanDefinitionPostProcessor是要分析的重点


2.png


3.png


构造方法:

public AutowiredAnnotationBeanPostProcessor() {
   this.autowiredAnnotationTypes.add(Autowired.class);
   this.autowiredAnnotationTypes.add(Value.class);
   try {
      this.autowiredAnnotationTypes.add((Class<? extends Annotation>)
            ClassUtils.forName("javax.inject.Inject", AutowiredAnnotationBeanPostProcessor.class.getClassLoader()));
      logger.trace("JSR-330 'javax.inject.Inject' annotation found and supported for autowiring");
   }
   catch (ClassNotFoundException ex) {
      // JSR-330 API not available - simply skip.
   }
}

把Autowired和Value标签加入到类型为Set的autowiredAnnotationTypes里。



当BeanName是自定义的WelcomeController时,从applyMergedBeanDefinitionPostProcessors方法的postProcessMergedBeanDefinition处进入断点:


@Override
public void postProcessMergedBeanDefinition(RootBeanDefinition beanDefinition, Class<?> beanType, String beanName) {
   InjectionMetadata metadata = findAutowiringMetadata(beanName, beanType, null);
   metadata.checkConfigMembers(beanDefinition);
}


findAutowiringMetadata是寻找被注解的元数据:

private InjectionMetadata findAutowiringMetadata(String beanName, Class<?> clazz, @Nullable PropertyValues pvs) {
   // Fall back to class name as cache key, for backwards compatibility with custom callers.
   String cacheKey = (StringUtils.hasLength(beanName) ? beanName : clazz.getName());
   // Quick check on the concurrent map first, with minimal locking.
   // 从容器中查找是否有给定类的autowire相关注解元信息
   InjectionMetadata metadata = this.injectionMetadataCache.get(cacheKey);
   if (InjectionMetadata.needsRefresh(metadata, clazz)) {
      synchronized (this.injectionMetadataCache) {
         metadata = this.injectionMetadataCache.get(cacheKey);
         if (InjectionMetadata.needsRefresh(metadata, clazz)) {
            if (metadata != null) {
               metadata.clear(pvs);
            }
            metadata = buildAutowiringMetadata(clazz);
            // 将得到的给定类autowire相关注解源信息存储在容器缓存中
            this.injectionMetadataCache.put(cacheKey, metadata);
         }
      }
   }
   return metadata;
}


该方法扫描到类里的属性或者方法有对应的注解,就会将其封装起来,最终封装成InjectionMetadata实例返回,进入到InjectionMetadata里:

4.png


其中包含了哪些需要注入的元素,以及元素要注入到哪个目标类中,targetClass代表目标bean的class对象,injectedElements保存的是需要被注入的元素,即被Autowired或Value注解的属性或方法,checkedElements里面只保存了由Spring默认处理的属性、方法。


 injectedElements集合的泛型是InjectedElement,保存单个InjectedElement的值


5.png


member用于保存被Autowired、Value注解标记的属性,isField用来决定member是Field还是方法,PropertyDescriptor可以对属性反射读写操作


回到findAutowiringMetadata方法,cacheKey是metadata在容器缓存中的名字,获取到了之后会先在容器缓存里查一下先前有没有获取到InjectionMetadata对象,之后会执行needsRefresh方法


public static boolean needsRefresh(@Nullable InjectionMetadata metadata, Class<?> clazz) {
   return (metadata == null || metadata.targetClass != clazz);
}


该方法判断是否需要重新去扫描获取bean,如果不需要就会直接从缓存里返回先前注册的metadata实例。


在 if 里用到了双重锁检查机制,最终会调用


metadata = buildAutowiringMetadata(clazz);

创建出metadata来,进入到buildResourceMetadata:

private InjectionMetadata buildAutowiringMetadata(final Class<?> clazz) {
   if (!AnnotationUtils.isCandidateClass(clazz, this.autowiredAnnotationTypes)) {
      return InjectionMetadata.EMPTY;
   }
   List<InjectionMetadata.InjectedElement> elements = new ArrayList<>();
   Class<?> targetClass = clazz;
   do {
      final List<InjectionMetadata.InjectedElement> currElements = new ArrayList<>();
      // 收集被@Autowired或者@Value标记的Field
      // 利用反射机制获取给定类中所有的声明字段,获取字段上的注解信息
      ReflectionUtils.doWithLocalFields(targetClass, field -> {
         MergedAnnotation<?> ann = findAutowiredAnnotation(field);
         if (ann != null) {
            if (Modifier.isStatic(field.getModifiers())) {
               if (logger.isInfoEnabled()) {
                  logger.info("Autowired annotation is not supported on static fields: " + field);
               }
               return;
            }
            boolean required = determineRequiredStatus(ann);
            // 将当前字段元信息封装,添加在返回的集合中
            currElements.add(new AutowiredFieldElement(field, required));
         }
      });
      ReflectionUtils.doWithLocalMethods(targetClass, method -> {
         Method bridgedMethod = BridgeMethodResolver.findBridgedMethod(method);
         if (!BridgeMethodResolver.isVisibilityBridgeMethodPair(method, bridgedMethod)) {
            return;
         }
         MergedAnnotation<?> ann = findAutowiredAnnotation(bridgedMethod);
         if (ann != null && method.equals(ClassUtils.getMostSpecificMethod(method, clazz))) {
            if (Modifier.isStatic(method.getModifiers())) {
               if (logger.isInfoEnabled()) {
                  logger.info("Autowired annotation is not supported on static methods: " + method);
               }
               return;
            }
            if (method.getParameterCount() == 0) {
               if (logger.isInfoEnabled()) {
                  logger.info("Autowired annotation should only be used on methods with parameters: " +
                        method);
               }
            }
            boolean required = determineRequiredStatus(ann);
            PropertyDescriptor pd = BeanUtils.findPropertyForMethod(bridgedMethod, clazz);
            currElements.add(new AutowiredMethodElement(method, required, pd));
         }
      });
      elements.addAll(0, currElements);
      targetClass = targetClass.getSuperclass();
   }
   while (targetClass != null && targetClass != Object.class);
   return InjectionMetadata.forElements(elements, clazz);
}


首先看一下该类是否有资格成为被Autowired或Value标记的候选类,主要是看一下class对象是不是普通的class,即这两个注解在这个class里有没有表示别的意思,判断逻辑如下:


public static boolean isCandidateClass(Class<?> clazz, String annotationName) {
   if (annotationName.startsWith("java.")) {
      return true;
   }
   if (AnnotationsScanner.hasPlainJavaAnnotationsOnly(clazz)) {
      return false;
   }
   return true;
}


注解有java开头的注解就算是候选者;如果clazz是以java.打头或是Order类型的,则标签不会起作用,不能算做候选者



回到AutowiredAnnotationBeanPostProcessor.java的buildAutowiringMetadata方法


6.png


之后会通过循环来遍历class里面的属性元素以及方法元素,不管是何种元素都会执行findAutowiredAnnotation方法收集被Aotowired或Value标记的Field


进入到findAutowiredAnnotation方法里:


@Nullable
private MergedAnnotation<?> findAutowiredAnnotation(AccessibleObject ao) {
   MergedAnnotations annotations = MergedAnnotations.from(ao);
   for (Class<? extends Annotation> type : this.autowiredAnnotationTypes) {
      MergedAnnotation<?> annotation = annotations.get(type);
      if (annotation.isPresent()) {
         return annotation;
      }
   }
   return null;
}


isPresent方法判断是否被两种标签修饰,是的话将标记信息返回


7.png


之后判断Field是否是静态的,是的话会抛异常,因为静态Field不支持注入


之后再会获得Autowired里面的require属性

boolean required = determineRequiredStatus(ann);


获取到相关信息之后就会将field和required属性添加到list里面

currElements.add(new AutowiredFieldElement(field, required));

之后就会把收集到的被注解标记的属性以及方法实例,存储到集合中

8.png


最后返回:


return InjectionMetadata.forElements(elements, clazz);


进入到forElements方法里:

public static InjectionMetadata forElements(Collection<InjectedElement> elements, Class<?> clazz) {
   return (elements.isEmpty() ? InjectionMetadata.EMPTY : new InjectionMetadata(clazz, elements));
}


该方法会将收集到的被标记的元素放入到新创建的InjectionMetadata实例里


9.png


回到findAutowiringMetadata,

10.png

最后将metadata存储到缓存里


回到postProcessMergedBeanDefinition方法


@Override
public void postProcessMergedBeanDefinition(RootBeanDefinition beanDefinition, Class<?> beanType, String beanName) {
   InjectionMetadata metadata = findAutowiringMetadata(beanName, beanType, null);
   metadata.checkConfigMembers(beanDefinition);
}

在获取到了metadata之后,会调用checkConfigMembers方法,进入到方法里:

public void checkConfigMembers(RootBeanDefinition beanDefinition) {
   Set<InjectedElement> checkedElements = new LinkedHashSet<>(this.injectedElements.size());
   for (InjectedElement element : this.injectedElements) {
      Member member = element.getMember();
      if (!beanDefinition.isExternallyManagedConfigMember(member)) {
         beanDefinition.registerExternallyManagedConfigMember(member);
         checkedElements.add(element);
         if (logger.isTraceEnabled()) {
            logger.trace("Registered injected element on class [" + this.targetClass.getName() + "]: " + element);
         }
      }
   }
   this.checkedElements = checkedElements;
}


会把需要spring容器用默认策略注入的injectedelements集合给保存到前面说的checkedElements里,这样就完成了收集被Autowired和Value标记的属性和方法,有了实例之后就能通过调用其inject方法在合适的时候进行属性值的注入


回到doCreateBean


11.png



相关文章
|
5天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
18 2
|
6天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
18天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
38 3
|
26天前
|
缓存 前端开发 JavaScript
前端的全栈之路Meteor篇(二):容器化开发环境下的meteor工程架构解析
本文详细介绍了使用Docker创建Meteor项目的准备工作与步骤,解析了容器化Meteor项目的目录结构,包括工程准备、环境配置、容器启动及项目架构分析。提供了最佳实践建议,适合初学者参考学习。项目代码已托管至GitCode,方便读者实践与交流。
|
1月前
|
存储 应用服务中间件 云计算
深入解析:云计算中的容器化技术——Docker实战指南
【10月更文挑战第14天】深入解析:云计算中的容器化技术——Docker实战指南
53 1
|
1月前
|
XML Java 数据格式
Spring IOC容器的深度解析及实战应用
【10月更文挑战第14天】在软件工程中,随着系统规模的扩大,对象间的依赖关系变得越来越复杂,这导致了系统的高耦合度,增加了开发和维护的难度。为解决这一问题,Michael Mattson在1996年提出了IOC(Inversion of Control,控制反转)理论,旨在降低对象间的耦合度,提高系统的灵活性和可维护性。Spring框架正是基于这一理论,通过IOC容器实现了对象间的依赖注入和生命周期管理。
65 0
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
67 0
|
1月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
52 0
|
1月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
60 0
|
1月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
80 0

推荐镜像

更多