Python 高手都这样使用字典,这些高效方法你知道吗?|pythonic 小技巧

简介: 社区曾有人开玩笑地说:「Python 企图用字典装载整个世界。」可见其有多重要,不用多说,我平时用的也很多,索性总结一下,把一些常用的方法写下来,分享给大家。

字典(dict)对象是 Python 最常用的数据结构之一。


社区曾有人开玩笑地说:「Python 企图用字典装载整个世界。」


可见其有多重要,不用多说,我平时用的也很多,索性总结一下,把一些常用的方法写下来,分享给大家。


一、字典创建


# 1、创建空字典
a = {}
b = dict()
# 2、有初始值,从输入的便利程度来说,我更喜欢第二种
a = {'a': 1, 'b': 2, 'c': 3}
b = dict(a=1, b=2, c=3)
# 3、key 来自一个列表,而 value 相同, 使用 fromkeys,那是相当的优雅
keys = ['a', 'b', 'c']
value = 100
d = dict.fromkeys(keys, value)
# 4、key 来自一个列表,而 value 也是一个列表,使用 zip
keys = ['a', 'b', 'c']
values = [1, 2, 3]
d = dict(zip(keys, values))
复制代码


二、字典合并


m = {'a': 1}
n = {'b': 2, 'c': 3}
# 合并,两种方式
# 1、使用 update
m.update(n)
# 2、使用 **
{**m, **n}
复制代码


三、判断 key 是否存在


在 Python2 中判断某个 key 是否存在,可以使用 has_key,但这个方法在 Python3 中已经被移除了。


另一种方法是使用 in 关键字,不仅兼容 Python2 和 Python3,速度还更快,强烈推荐。


d = {'a': 1, 'b': 2}
if 'a' in d:
    print('hello')    
复制代码


四、获取字典中的值


d = {'a': 1, 'b': 2}
# 1、直接用 key 取值,但这种方式不好,如果 key 不存在会报错,推荐使用 get
a = d['a']
# 2、使用 get,如果 key 不存在还可以赋默认值
a = d.get('a')
c = d.get('c', 3)
复制代码


五、字典遍历


d = {'a': 1, 'b': 2, 'c': 3}
# 遍历 key
for key in d.keys():
    pass
# 遍历 value
for key, value in d.values():
    pass
# 遍历 key 和 value
for key, value in d.items():
    pass
复制代码


六、字典按 key 或 value 排序


d = {'a': 1, 'b': 2, 'e': 9, 'c': 5, 'd': 7}
# 按 key 排序
sorted(d.items(), key=lambda t: t[0])
# 按 key 倒序
sorted(d.items(), key=lambda t: t[0], reverse=True)
# 按 value 排序
sorted(d.items(), key=lambda t: t[1])
复制代码


还有一个需求是我在开发过程经常碰到的,就是有一个列表,列表的元素是字典,然后按字典的 value 对列表进行排序。


l = [{'name': 'a', 'count': 4}, {'name': 'b', 'count': 1}, {'name': 'd', 'count': 2}, {'name': 'c', 'count': 6}]
sorted(l, key=lambda e: e.__getitem__('count'))
# 倒序
sorted(l, key=lambda e: e.__getitem__('count'), reverse=True)
复制代码


七、字典推导式


列表推导式和字典推导式是我相当喜欢的功能,简洁高效。mapfilter 我都已经快不会用了。


l = [1, 2, 3]
{n: n * n for n in l}
{1: 1, 2: 4, 3: 9}
复制代码


以上。



目录
相关文章
|
21天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
41 3
|
2月前
|
测试技术 API Python
【10月更文挑战第1天】python知识点100篇系列(13)-几种方法让你的电脑一直在工作
【10月更文挑战第1天】 本文介绍了如何通过Python自动操作鼠标或键盘使电脑保持活跃状态,避免自动息屏。提供了三种方法:1) 使用PyAutoGUI,通过安装pip工具并执行`pip install pyautogui`安装,利用`moveRel()`方法定时移动鼠标;2) 使用Pymouse,通过`pip install pyuserinput`安装,采用`move()`方法移动鼠标绝对位置;3) 使用PyKeyboard,同样需安装pyuserinput,模拟键盘操作。文中推荐使用PyAutoGUI,因其功能丰富且文档详尽。
|
9天前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
16天前
|
JSON 安全 API
Python调用API接口的方法
Python调用API接口的方法
81 5
|
25天前
|
算法 决策智能 Python
Python中解决TSP的方法
旅行商问题(TSP)是寻找最短路径,使旅行商能访问每个城市一次并返回起点的经典优化问题。本文介绍使用Python的`ortools`库解决TSP的方法,通过定义城市间的距离矩阵,调用库函数计算最优路径,并打印结果。此方法适用于小规模问题,对于大规模或特定需求,需深入了解算法原理及定制策略。
35 15
WK
|
1月前
|
Python
Python中format_map()方法
在Python中,`format_map()`方法用于使用字典格式化字符串。它接受一个字典作为参数,用字典中的键值对替换字符串中的占位符。此方法适用于从字典动态获取值的场景,尤其在处理大量替换值时更为清晰和方便。
WK
78 36
|
19天前
|
XML JSON API
如何使用Python将字典转换为XML
本文介绍了如何使用Python中的`xml.etree.ElementTree`库将字典数据结构转换为XML格式。通过定义递归函数处理字典到XML元素的转换,生成符合标准的XML文档,适用于与旧系统交互或需支持复杂文档结构的场景。示例代码展示了将一个简单字典转换为XML的具体实现过程。
14 1
|
23天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
60 4
|
29天前
|
Python
Python编程中的魔法方法(Magic Methods)
【10月更文挑战第40天】在Python的世界中,魔法方法就像是隐藏在代码背后的神秘力量。它们通常以双下划线开头和结尾,比如 `__init__` 或 `__str__`。这些方法定义了对象的行为,当特定操作发生时自动调用。本文将揭开这些魔法方法的面纱,通过实际例子展示如何利用它们来增强你的类功能。
14 1
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
89 2
11种经典时间序列预测方法:理论、Python实现与应用