【论文代码】GraphSAGE(更新ing)

简介: (4)root_weight (bool, optional): If set to :obj:False, the layer will not add transformed root node features to the output.(default: :obj:True)(5)bias (bool, optional): If set to :obj:False, the layer will not learn an additive bias. (default: :obj:True)(6)**kwargs (optional): Additional arguments

1.1 加载数据

1.2 Unsupervised Loss

1.3 Models

1.4 评估与模型使用

1.5 Main

二、PyG版本

image.png

class SAGEConv(MessagePassing):

(1)in_channels (int or tuple): Size of each input sample, or :obj:-1 to derive the size from the first input(s) to the forward method.A tuple corresponds to the sizes of source and target dimensionalities.

(2)out_channels (int): Size of each output sample.

(3)normalize (bool, optional): If set to :obj:True, output features will be :math:ℓ 2 \ell_2ℓ

2

-normalized, i.e., :math:

image.png

. (default: :obj:False)

(4)root_weight (bool, optional): If set to :obj:False, the layer will not add transformed root node features to the output.(default: :obj:True)

(5)bias (bool, optional): If set to :obj:False, the layer will not learn an additive bias. (default: :obj:True)

(6)**kwargs (optional): Additional arguments of

官方代码:https://github.com/williamleif/graphsage-simple/

如果我们使用pytorch的PyG也能很方便调用:

# -*- coding: utf-8 -*-
"""
Created on Fri Oct  8 23:16:13 2021
@author: 86493
"""
import torch
from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures
dataset = Planetoid(root='C:/dataset/Cora/processed', name='Cora', transform=NormalizeFeatures())
print()
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')
data = dataset[0]  # Get the first graph object.
print()
print(data)
print('======================')
# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Contains isolated nodes: {data.has_isolated_nodes()}')
print(f'Contains self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')
# 2.可视化节点表征分布的方法
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
def visualize(h, color):
    z = TSNE(n_components=2).fit_transform(h.detach().cpu().numpy())
    plt.figure(figsize=(10,10))
    plt.xticks([])
    plt.yticks([])
    plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")
    plt.show()
# 网络的构造
import torch
from torch.nn import Linear
import torch.nn.functional as F
"""
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):
    def __init__(self, hidden_channels):
        super(GCN, self).__init__()
        torch.manual_seed(12345)
        self.conv1 = GCNConv(dataset.num_features, hidden_channels)
        self.conv2 = GCNConv(hidden_channels, dataset.num_classes)
    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.conv2(x, edge_index)
        return x
"""
from torch_geometric.nn import SAGEConv
class SAGE(torch.nn.Module):
    def __init__(self, hidden_channels):
        super(SAGE, self).__init__()
        torch.manual_seed(12345)
        self.conv1 = SAGEConv(dataset.num_features, hidden_channels)
        self.conv2 = SAGEConv(hidden_channels, dataset.num_classes)
    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.conv2(x, edge_index)
        return x
model = SAGE(hidden_channels=16)
print(model)
# 可视化由未经训练的图神经网络生成的节点表征
model = SAGE(hidden_channels=16)
model.eval()
out = model(data.x, data.edge_index)
visualize(out, color=data.y)
# 图神经网络的训练
model = SAGE(hidden_channels=16)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()
def train():
      model.train()
      optimizer.zero_grad()  # Clear gradients.
      out = model(data.x, data.edge_index)  # Perform a single forward pass.
      loss = criterion(out[data.train_mask], data.y[data.train_mask])  # Compute the loss solely based on the training nodes.
      loss.backward()  # Derive gradients.
      optimizer.step()  # Update parameters based on gradients.
      return loss
for epoch in range(1, 201):
    loss = train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')
# 增加loss折线图
import pandas as pd
df = pd.DataFrame(columns = ["Loss"]) # columns列名
df.index.name = "Epoch" 
for epoch in range(1, 201):
    loss = train()
    #df.loc[epoch] = loss.item()
    df.loc[epoch] = loss.item()
df.plot() 
# 图神经网络的测试
def test():
      model.eval()
      out = model(data.x, data.edge_index)
      pred = out.argmax(dim=1)  # Use the class with highest probability.
      test_correct = pred[data.test_mask] == data.y[data.test_mask]  # Check against ground-truth labels.
      test_acc = int(test_correct.sum()) / int(data.test_mask.sum())  # Derive ratio of correct predictions.
      return test_acc
test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')
# 可视化由训练后的图神经网络生成的节点表征
model.eval()
out = model(data.x, data.edge_index)
visualize(out, color=data.y)

打印出的结果为:

Dataset: Cora():
======================
Number of graphs: 1
Number of features: 1433
Number of classes: 7
Data(
  x=[2708, 1433], edge_index=[2, 10556], 
  y=[2708], train_mask=[2708], 
  val_mask=[2708], test_mask=[2708]
  )
======================
Number of nodes: 2708
Number of edges: 10556
Average node degree: 3.90
Number of training nodes: 140
Training node label rate: 0.05
Contains isolated nodes: False
Contains self-loops: False
Is undirected: True
SAGE(
  (conv1): SAGEConv(1433, 16)
  (conv2): SAGEConv(16, 7)
)

image.png

可视化的图如上所示,也可以可视化loss的200个epoch的折线图:

image.png

Reference

(1)https://github.com/twjiang/graphSAGE-pytorch/tree/master/src

(2)https://zhuanlan.zhihu.com/p/410407148

(3)https://blog.csdn.net/weixin_44027006/article/details/116888648

(4)GraphSAGE 代码解析(二) - layers.py

(5)https://www.zhihu.com/search?q=GraphSAGE%E4%BB%A3%E7%A0%81PyG%E8%A7%A3%E8%AF%BB&utm_content=search_history&type=content

相关文章
|
2月前
|
编解码 自然语言处理 API
ModelScope问题之翻译模型给的例子报错如何解决
ModelScope模型报错是指在使用ModelScope平台进行模型训练或部署时遇到的错误和问题;本合集将收集ModelScope模型报错的常见情况和排查方法,帮助用户快速定位问题并采取有效措施。
49 2
|
6月前
|
Kubernetes 算法 调度
|
10月前
|
机器学习/深度学习 JSON 编解码
|
API iOS开发 MacOS
【TVM 学习资料】使用 Auto-scheduling 优化算子
【TVM 学习资料】使用 Auto-scheduling 优化算子
|
机器学习/深度学习 算法 C++
Multi task learning多任务学习背景简介
Multi task learning多任务学习背景简介
|
存储 XML C#
Unity 实用小技巧(更新ing)
Unity 实用小技巧(更新ing)
161 0
Unity 实用小技巧(更新ing)
|
搜索推荐 vr&ar
预训练语言模型概述(持续更新ing...)
预训练语言模型概述(持续更新ing...)
预训练语言模型概述(持续更新ing...)
|
自然语言处理
关于为什么有了通用BERT,却还需要特定领域BERT?-对此问题做出回答的相关理论和文章(如有)(持续更新ing...)
关于为什么有了通用BERT,却还需要特定领域BERT?-对此问题做出回答的相关理论和文章(如有)(持续更新ing...)
|
数据处理
主题论文总结3:维基百科生成任务(持续更新ing...)
主题论文总结3:维基百科生成任务(持续更新ing...)
|
机器学习/深度学习 自然语言处理 数据库
文本摘要数据集的整理、总结及介绍(持续更新ing...)
文本摘要数据集的整理、总结及介绍(持续更新ing...)
文本摘要数据集的整理、总结及介绍(持续更新ing...)