图解python | 数据结构

简介: Python中有大量的数据结构与容器供编程使用,在本节内容中我们汇总前面所学的知识点,并拓展一些新知识,来介绍Python数据结构。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/56
本文地址http://www.showmeai.tech/article-detail/83
声明:版权所有,转载请联系平台与作者并注明出处


Python3数据结构

Python中有大量的数据结构与容器供编程使用,在本节内容中我们汇总前面所学的知识点,并拓展一些新知识,来介绍Python数据结构。

1.Python列表

Python中列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能。

Python3的数据结构 | 列表(List)

关于Python列表的详细内容请参考前序内容Python列表及应用

以下是 Python 中列表的方法:

方法 描述
list.append(x) 把一个元素添加到列表的结尾,相当于 a[len(a):] = [x]。
list.extend(L) 通过添加指定列表的所有元素来扩充列表,相当于 a[len(a):] = L。
list.insert(i, x) 在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如 a.insert(0, x) 会插入到整个列表之前,而 a.insert(len(a), x) 相当于 a.append(x) 。
list.remove(x) 删除列表中值为 x 的第一个元素。如果没有这样的元素,就会返回一个错误。
list.pop([i]) 从列表的指定位置移除元素,并将其返回。如果没有指定索引,a.pop()返回最后一个元素。元素随即从列表中被移除。(方法中 i 两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在 Python 库参考手册中遇到这样的标记。)
list.clear() 移除列表中的所有项,等于del a[:]。
list.index(x) 返回列表中第一个值为 x 的元素的索引。如果没有匹配的元素就会返回一个错误。
list.count(x) 返回 x 在列表中出现的次数。
list.sort() 对列表中的元素进行排序。
list.reverse() 倒排列表中的元素。
list.copy() 返回列表的浅复制,等于a[:]。

下面示例演示了列表的大部分方法(在线python3环境):

a = [2, 123, 123, 1, 1234.5]
print('''a.count(123), a.count(1), a.count('x')''')
print(a.count(123), a.count(1), a.count('x'), "\n")

a.insert(2, -1)
print('''a.insert(2, -1)''')
print(a, "\n")

a.append(456)
print('''a.append(456)''')
print(a, "\n")

a.index(456)
print('''a.index(456)''')
print(a.index(456), "\n")

a.remove(456)
print('''a.remove(456)''')
print(a, "\n")


a.reverse()
print('''a.reverse()''')
print(a, "\n")

a.sort()
print('''a.sort()''')
print(a, "\n")

运行结果

a.count(123), a.count(1), a.count('x')
2 1 0 

a.insert(2, -1)
[2, 123, -1, 123, 1, 1234.5] 

a.append(456)
[2, 123, -1, 123, 1, 1234.5, 456] 

a.index(456)
6 

a.remove(456)
[2, 123, -1, 123, 1, 1234.5] 

a.reverse()
[1234.5, 1, 123, -1, 123, 2] 

a.sort()
[-1, 1, 2, 123, 123, 1234.5] 

注意:类似 insert, remove 或 sort 等修改列表的方法没有返回值。

2.将列表当做堆栈使用

列表方法使得列表可以很方便的作为一个堆栈来使用,堆栈作为特定的数据结构,最先进入的元素最后一个被释放(后进先出)。用 append() 方法可以把一个元素添加到堆栈顶。用不指定索引的 pop() 方法可以把一个元素从堆栈顶释放出来。

Python3的数据结构 | 列表(List)-堆栈

参考如下代码(在线python3环境):

stack = ['Baidu', 'ShowMeAI', 'google']
stack.append('ByteDance')
stack.append('Tencent')
print(stack)

stack.pop()
print('''stack.pop()''')
print(stack, "\n")

stack.pop()
print('''stack.pop()''')
print(stack, "\n")

stack.pop()
print('''stack.pop()''')
print(stack, "\n")

运行结果为

['Baidu', 'ShowMeAI', 'google', 'ByteDance', 'Tencent']
stack.pop()
['Baidu', 'ShowMeAI', 'google', 'ByteDance'] 

stack.pop()
['Baidu', 'ShowMeAI', 'google'] 

stack.pop()
['Baidu', 'ShowMeAI'] 

3.将列表当作队列使用

也可以把列表当做队列用,只是在队列里第一加入的元素,第一个取出来;但是拿列表用作这样的目的效率不高。在列表的最后添加或者弹出元素速度快,然而在列表里插入或者从头部弹出速度却不快(因为所有其他的元素都得一个一个地移动)。

Python3的数据结构 | 列表(List)-队列

from collections import deque
queue = deque(['Baidu', 'ShowMeAI', 'google'])
queue.append('ByteDance')       
queue.append('Tencent')
print(deque)

print('''queue.popleft()''')
print(queue.popleft(), "\n")
print('''queue.popleft()''')
print(queue.popleft(), "\n")
print(deque)

运行结果为

<class 'collections.deque'>
queue.popleft()
Baidu 

queue.popleft()
ShowMeAI 

<class 'collections.deque'>

4.列表推导式

列表推导式提供了从序列创建列表的简单途径。通常应用程序将一些操作应用于某个序列的每个元素,用其获得的结果作为生成新列表的元素,或者根据确定的判定条件创建子序列。

Python3的数据结构 | 列表(List)推导式

每个列表推导式都在 for 之后跟一个表达式,然后有零到多个 for 或 if 子句。返回结果是一个根据表达从其后的 for 和 if 上下文环境中生成出来的列表。如果希望表达式推导出一个元组,就必须使用括号。

vec = [1, 2, 3]
# 将列表中每个数值乘三,获得一个新的列表:
three_times_vec = [3*x for x in vec]
print(three_times_vec)

# 将列表中每个数值平方,并和原始值组成列表后再组成新的列表:
cmp_x_square = [[x, x**2] for x in vec]
print(cmp_x_square)

运行结果

[3, 6, 9]
[[1, 1], [2, 4], [3, 9]]

列表推导式还可以用来对序列里每一个元素都调用某函数方法:

fruits = ['banana', 'loganberry', 'apple']
print([fruit.upper() for fruit in fruits])
# 输出['BANANA', 'LOGANBERRY', 'APPLE']

在列表推导式中可以用if子句构建过滤器对生成结果过滤:

[3*x for x in vec if x > 2]
# 结果[9]
[3*x for x in vec if x < 3]
# 结果[3, 6]

还可以组合两个列表去使用列表推导式构建更复杂的结果

vec1 = [1, 2, 3]
vec2 = [4, 5, 6]
[x*y for x in vec1 for y in vec2] #两两相乘得到新列表
# 结果[4, 5, 6, 8, 10, 12, 12, 15, 18]

[x+y for x in vec1 for y in vec2] #两两相加得到新列表
# 结果[5, 6, 7, 6, 7, 8, 7, 8, 9]

[vec1[i]*vec2[i] for i in range(len(vec1))] #对应位置相乘得到新列表
# 结果[4, 10, 18]

5.嵌套列表解析

Python的列表还可以嵌套。

以下代码展示了3X4的矩阵列表(在线python3环境):

matrix = [
      [1, 2, 3, 4],
      [5, 6, 7, 8],
      [9, 10, 11, 12],
       ]

# 将3X4的矩阵列表转换为4X3列表:
trans = [[row[i] for row in matrix] for i in range(4)]
print(trans)

# 等价于下列做法,但是上面的方式更简洁
transposed = []
for i in range(4):
   transposed_row = []
   for row in matrix:
      transposed_row.append(row[i])
   transposed.append(transposed_row)
print(transposed)

6.del语句

使用 del 语句可以从一个列表中依索引而不是值来删除一个元素。这与使用 pop() 返回一个值不同。可以用 del 语句从列表中删除一个切割,或清空整个列表(我们以前介绍的方法是给该切割赋一个空列表)。例如:

a = [1, 2, 3, 456, 789, 1234.5]
del a[0] #[2, 3, 456, 789, 1234.5]
del a[2:4] #[2, 3, 1234.5]
del a[:]

也可以用 del 删除实体变量:

del a

7.元组

Python3的数据结构 | 元组(Tuple)

元组由若干逗号分隔的值组成,例如:

t = 12345, 54321, 'hello!'
t[0] # 12345
t #(12345, 54321, 'hello!')
u = t, (1, 2, 3, 4, 5)
u # ((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

元组在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号, 不过括号通常是必须的(如果元组是更大的表达式的一部分)。

8.集合

Python3的数据结构 | 集合(Set)

集合是一个无序不重复元素的集。基本功能包括关系测试和消除重复元素。

可以用大括号({})创建集合。注意:如果要创建一个空集合,你必须用 set() 而不是 {} ;后者创建一个空的字典,下一节我们会介绍这个数据结构。

以下是一个简单的代码示例(在线python3环境):

basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
print(basket)                      # 删除重复的
# 结果{'orange', 'banana', 'pear', 'apple'}

'orange' in basket                 # 检测成员
# 结果True

'crabgrass' in basket
# 结果False

# 以下演示了两个集合的操作
a = set('abracadabra')
b = set('alacazam')

a                                  # a 中唯一的字母
# 结果{'a', 'r', 'b', 'c', 'd'}

a - b                              # 在 a 中的字母,但不在 b 中
# 结果{'r', 'd', 'b'}

a | b                              # 在 a 或 b 中的字母
# 结果{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}

a & b                              # 在 a 和 b 中都有的字母
# 结果{'a', 'c'}

a ^ b                              # 在 a 或 b 中的字母,但不同时在 a 和 b 中
# 结果{'r', 'd', 'b', 'm', 'z', 'l'}

9.字典

Python3的数据结构 | 字典(Dictionary)

另一个非常有用的 Python 内建数据类型是字典。

序列是以连续的整数为索引,与此不同的是,字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。

理解字典的最佳方式是把它看做无序的键=>值对集合。在同一个字典之内,关键字必须是互不相同。

一对大括号创建一个空的字典:{}。

company = {'ShowMeAI': 1234, 'Baidu': 5678}
company['guido'] = 4127

company
# 结果{'Baidu': 5678, 'guido': 4127, 'ShowMeAI': 1234}

company['ShowMeAI']
# 结果1234

del company['Baidu']
company['irv'] = 4127
company
# 结果{'guido': 4127, 'irv': 4127, 'ShowMeAI': 1234}

list(company.keys())
# 结果['irv', 'guido', 'ShowMeAI']

sorted(company.keys())
# 结果['guido', 'irv', 'ShowMeAI']

'guido' in company
# 结果True

'ShowMeAI' not in company
# 结果False

构造函数 dict() 直接从键值对元组列表中构建字典。此外,字典推导可以用来创建任意键和值的表达式词典:

dict([('ShowMeAI', 1234), ('Baidu', 5678)])
# 结果{'ShowMeAI': 1234, 'Baidu': 5678}
{x: x**2 for x in (2, 4, 6)}
# 结果{2: 4, 4: 16, 6: 36}

如果关键字只是简单的字符串,使用关键字参数指定键值对有时候更方便:

dict(ShowMeAI=1234, Baidu=5678)
# 结果{'ShowMeAI': 1234, 'Baidu': 5678}

10.遍历技巧

在字典中遍历时,关键字和对应的值可以使用 items() 方法同时解读出来:

knights = {'ShowMeAI': 1234, 'Baidu': 5678}
for k, v in knights.items():
   print(k, v)

在序列中遍历时,索引位置和对应值可以使用 enumerate() 函数同时得到:

for i, v in enumerate(['tic', 'tac', 'toe']):
   print(i, v)
# 0 tic
# 1 tac
# 2 toe

同时遍历两个或更多的序列,可以使用 zip() 组合:

questions = ['name', 'age', 'color']
answers = ['ShowMeAI', '30', 'blue']
for q, a in zip(questions, answers):
   print('What is the {0}?  It is {1}.'.format(q, a))
# What is the name?  It is ShowMeAI.
# What is the quest?  It is 30.
# What is the color?  It is blue.

要反向遍历一个序列,首先指定这个序列,然后调用 reversed() 函数:

for i in reversed(range(1, 10, 2)):
   print(i)

# 9
# 7
# 5
# 3
# 1

要按顺序遍历一个序列,使用 sorted() 函数返回一个已排序的序列,并不修改原值:

basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
for f in sorted(set(basket)):
   print(f)

# apple
# banana
# orange
# pear

资料与代码下载

本教程系列的代码可以在ShowMeAI对应的github中下载,可本地python环境运行,能访问Google的宝宝也可以直接借助google colab一键运行与交互操作学习哦!

本教程系列涉及的Python速查表可以在以下地址下载获取:

拓展参考资料

ShowMeAI相关文章推荐

ShowMeAI系列教程推荐

showmeai

目录
相关文章
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护 【10月更文挑战第3天】
112 0
|
2月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
21天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
27 1
|
22天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
22天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
2月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
52 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
2月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
44 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
2月前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
80 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
2月前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
60 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
2月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
52 2