Python数据分析 | 数据可视化原则与方法

简介: 数据可视化是以图示或图形格式表示的数据,以更直观方式理解与分析数据。本篇内容,我们给大家介绍数据分析中关于可视化的一些核心知识,包括:各类图形及特点,不同图形选择方法。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/33
本文地址http://www.showmeai.tech/article-detail/149
声明:版权所有,转载请联系平台与作者并注明出处


一、数据可视化介绍

数据可视化是以图示或图形格式表示的数据,以更直观方式理解与分析数据。

我们经常听到一个说法“能用图描述的就不用表,能用表就不用文字”,确实我们在认知上,对于图形的敏感度远比文字高,获取的信息也更丰富。我们在互联网企业中更是随处可见各种数据看板,帮助我们第1时间了解数据与业务状况。

本篇内容,我们给大家介绍数据分析中关于可视化的一些核心知识,包括:

  • 各类图形及特点
  • 不同图形选择方法

二、各类图形及特点

接下来给大家介绍下数据可视化图表的基本类型和选用原则,选用正确的数据可视化的图表。

2.1 柱形图(Column Chart)

柱形图的局限在于它仅适用于中小规模的数据集,当数据较多时就不易分辨。一般而言,不要超过10个。

通常来说,柱形图的横轴是时间维度,用户习惯性认为存在时间趋势。如果遇到横轴不是时间维度的情况,建议用颜色区分每根柱子。

2.2 条形图(Bar Chart)

条形图用来反映分类项目之间的比较,适合应用于跨类别比较数据。在我们需要比较项类的大小、高低时适合使用条形图。

2.3 折线图(Line Chart)

折线图用来反映随时间变化的趋势。当我们需要描述事物随时间维度的变化时常常需要使用该图形。

2.4 曲线图(Curve)

假如关注的是数据反映的整体趋势,曲线图最适合。

2.5 饼图(Pie Chart)

2.6 直方图(Histogram)

2.7 箱线图(Box Plot)

2.8 散点图(Scatter Chart)

散点图的数据为三维数据,使用两组数据构成多个坐标点,分析坐标点的分布情况,判断两个变量之间的关联或分布趋势。

2.9 气泡图(Bubble chart)

气泡图是散点图的一种衍生,通过每个点的面积大小来衡量第三维度,适合三维数据的对比,且需要强调第三维,超过三维就搞不定。

2.10 雷达图(Radar Chart)

雷达图适用于多维数据(四维以上),且每个维度必须可以排序。数据点一般6个左右,太多的话辨别起来有困难。

2.11 瀑布图(Waterfall)

瀑布可视化,对于显示部分与整体的关系(尤其是负向关系)时非常有用。

三、不同图形选择方法

3.1 按应用场景选择

虽然图表种类繁多,但是基于使用场景大致可以分为以下几种情况。

3.2 按数据关系选择

根据可视化专家 Andrew Abela 对该数据关系分类方式的提炼,他提出将图表展示的数据关系分为四类:比较、分布、构成和联系。下面对这四种关系以及应用举例和对应的可视化解决方案做了简要的分析。

大部分情况下,我们根据这份选择指南按图索骥就可以找到,方便又轻松,在实际应用中,也存在需要展示多种数据关系的情况,那么对应的图表类型也是每种关系对应的基本图形的综合运用。例如多个时间点上构成的比较等。

资料与代码下载

本教程系列的代码可以在ShowMeAI对应的 github 中下载,可本地python环境运行。能访问Google的宝宝也可以直接借助google colab一键运行与交互操作学习哦!

本系列教程涉及的速查表可以在以下地址下载获取:

拓展参考资料

ShowMeAI相关文章推荐

ShowMeAI系列教程推荐

showmeai

目录
相关文章
|
24天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
26天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
1月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
51 3
|
1天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
1月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
87 4
数据分析的 10 个最佳 Python 库
|
17天前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
22天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
23天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!
|
25天前
|
JSON 安全 API
Python调用API接口的方法
Python调用API接口的方法
120 5
|
1月前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。