图解数据分析 | 业务分析与数据挖掘

简介: 数据分析分核心步骤分为:业务认知与数据探索、数据预处理、业务认知与数据探索等三个核心步骤。本文介绍第三个步骤:业务认知与数据探索,包括常见业务分析模型,如AB测试、RFM、AARRR、对比分析、来源分析、细分分析、用户分析、聚类分析等。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/33
本文地址http://www.showmeai.tech/article-detail/139
声明:版权所有,转载请联系平台与作者并注明出处

数据分析分核心步骤分为: 业务认知与数据探索数据预处理业务认知与数据探索等三个核心步骤。本文介绍第三个步骤——业务认知与数据探索。

一、业务分析模型

1.1 AB测试

AB测试,简单来说,就是为同一个产品目标制定两个方案(比如两个页面一个用红色的按钮、另一个用蓝色的按钮),让一部分用户使用A方案,另一部分用户使用B方案,然后通过日志记录用户的使用情况,并通过结构化的日志数据分析相关指标,如点击率、转化率等,从而得出那个方案更符合预期设计目标,并最终将全部流量切换至符合目标的方案。

1.2 RFM分析

RFM模型是衡量客户价值和客户创利能力的重要工具和手段,是最流行、最简单、最有效的客户细分方法之一。

  • Recency最近一次消费:用户最近一次消费距离现在的时间。例如,1周前消费过的用户比1年前消费过的用户价值大。
  • Frequency消费频率:用户在统计周期内购买商品的次数。例如,购买频率高的用户价值比偶尔来一次的客户价值大。
  • Monetary消费金额:用户在统计周期内消费的总金额。例如,消费越多的用户价值越大。

1.3 漏斗分析 / AARRR

漏斗分析模型是一套流程式分析模型,已经广泛应用于流量监控、产品目标转化等日常欻据运营与数据分析中,可以帮助我们把握每个转化节点的效率,能够直观的发现问题所在,从而优化整个业务流程。

AARRR是一个产品的生命增长周期,描述了不同阶段的用户参与行为的深度,即: Acquisition(获取用户)、 Activation(激发活跃)、Retention(提高留存)、 Revenue(增加收入)、 Referral(传播推荐)。它能通过层与层之间用户的转化数,即转换率,来定位问题出在哪。

1.4 同期群分析

同期群分析,是通过分析性质完全一样的、可对比群体随时间的变化,来分析哪些因素影响用户的留存。只用简单的个图表,就直接描述了用户在一段时间周期的留存或流失变化情况。在数据运营领域十分重要,互联网运营特别需要仔细洞察留存情况。

1.5 对比分析

对比分析主要是指将两个相互联系的指标数据进行比较,从数量上展示和说明研究对象的规模大小,水平高低,速度快慢等相对数值,通过相同维度下的指标对比,可以发现,找出业务在不同阶段的问题。常见的对比方法包括时间对比,空间对比,标准对比。

(1)时间对比

最常用的就是同比和环比,通过时间周期的数据对比,了解目前数据水平的高低。

  • 同比:对比上一个周期的相同时段做比较。例如,今年6月比去年6月。
  • 环比:联系两个时长相等的时段做比较例如,今年6月比去年5月。

(2)标准对比

通过目前数据与设定的目标计划之间的对比,了解目前发展进程,完成进度等,了解差距后可以及时调整策略。例如:在图表中设置目标值、平均值、中位数等标准,与实际数据形成标准对比,分析数据情况。

(3)空间对比

在相同时间范围内与不同空间指标数据进行对比例如:各省份订单销售数据的差别对比,可以得出产品的优势地区重点突破,平衡人力物力等

1.6 来源分析

来源是指访问我们网站的用户是如何到达我们的网站的。要想深入分析不同渠道、不同阶段效果,可以通过SEM付费搜索等来源渠道和用户所在地区进行交叉分析,得出不同区域的获客详细信息。维度越细,分析结果也越有价值,从而指导网站的优化,最终达到提升用户转化率的目的。

1.7 细分分析

(1)多层钻取

将每层数据进行嵌套,点击不同维度数据,进行细分分析,通过多层钻取,直接在图表中点击查看细分数据,每层数据均可选择适合的图表类型进行展。

(2)聚焦下钻

对于数据中的一些重点数据,进行聚焦分析,在整体分析中,想要查看特别关注的部分数据详情,可以使用聚焦及下钻的功能,进行自由分析。

1.8 用户分析

常用的用户分析方法包括:活跃分析,留存分析,用户分群,用户画像,用户细查等。

以『活跃分析』为例,可以将用户活跃细分为浏览活跃、互动活跃、交易活跃等,通过活跃行为的细分,掌握关键行为指标。然后,通过用户行为事件序列,对用户属性进行分群,观察分群用户的访问、浏览、注册、互动、交易等行为,从而真正把握不同用户类型的特点,提供有针对性的产品和服务。

1.9 聚类分析

聚类分析是将数据分为相对同质的群组的分析方法。网站分析中的聚类主要分为:用户聚类、页面或内容聚类或来源聚类。用户聚类主要体现为用户分群,用户标签法页面聚类则主要是相似、相关页面分组,来源聚类主要包括渠道、关键词等。

二、数据挖掘与机器学习应用

2.1 监督学习

  • 分类

    • 逻辑回归
    • 朴素贝叶斯
    • 决策树
    • 随机森林
    • K近邻
    • 支持向量机
  • 回归

    • 线性回归

2.2 无监督学习

  • 聚类

    • K均值聚类
  • 降维

    • 主成分分析PCA

资料与代码下载

本教程系列的代码可以在ShowMeAI对应的 github中下载,可本地python环境运行。能访问Google的宝宝也可以直接借助google colab一键运行与交互操作学习哦!

本系列教程涉及的速查表可以在以下地址下载获取:

拓展参考资料

ShowMeAI相关文章推荐

ShowMeAI系列教程推荐

showmeai

目录
相关文章
|
3月前
|
数据采集 存储 数据挖掘
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
本文介绍了一个基于Python的书旗网小说网站数据采集与分析系统,通过自动化爬虫收集小说数据,利用Pandas进行数据处理,并通过Matplotlib和Seaborn等库进行数据可视化,旨在揭示用户喜好和市场趋势,为图书出版行业提供决策支持。
319 6
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
|
1月前
|
数据挖掘 UED
ChatGPT数据分析——探索性分析
ChatGPT数据分析——探索性分析
|
1月前
|
数据可视化 数据挖掘 数据处理
ChatGPT数据分析应用——热力图分析
ChatGPT数据分析应用——热力图分析
|
1月前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(分组分析)
ChatGPT在常用的数据分析方法中的应用(分组分析)
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
51 0
|
1月前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(对比分析)
ChatGPT在常用的数据分析方法中的应用(对比分析)
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
数据分析师是在多个行业中专门从事数据搜集、整理和分析的专业人员
数据分析师是在多个行业中专门从事数据搜集、整理和分析的专业人员
40 3
|
3月前
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
125 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
|
3月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
171 0
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。
77 1