图解大数据 | Hive搭建与应用@实操案例

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: Hive是大数据离线计算的关键组件,常用于数仓建设。本节ShowMeAI来详细讲解Hive的搭建和配置及使用方法。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/84
本文地址http://www.showmeai.tech/article-detail/171
声明:版权所有,转载请联系平台与作者并注明出处

收藏ShowMeAI查看更多精彩内容


1.Hive 搭建与配置

大数据生态中最重要的工具平台之一是 Hive,它是离线计算的关键组件,常用于数仓建设,在公司内会通过SQL实现大数据的统计与报表。下面来看一下Hive的搭建和配置使用方法。

1)下载Hive

安装 Hive 过程可以参考官方文档:https://cwiki.apache.org/confluence/display/Hive/GettingStarted

按照文件建议在 http://www.apache.org/dyn/closer.cgi/hive/ 下载最新的release,这里以Hive3.1.3为例讲解。

把安装文件解压到安装有hadoop环境的机器上:

root@ubuntu:~/bigdata# ll
total 20
drwxr-xr-x 27 root root 4096 Sep 30 07:24 azkaban/
drwxr-xr-x  2 root root 4096 Oct 13 08:36 demo/
drwxr-xr-x 12 1001 1001 4096 Sep 30 09:43 hadoop-3.3.0/
drwxr-xr-x 11 root root 4096 Oct 13 07:58 hive-3.1.3/
drwxr-xr-x 32 work work 4096 Aug 28 07:28 spark-3.0.1/
root@ubuntu:~/bigdata# pwd
/root/bigdata

接下来把Hive的bin目录导出PATH:

root@ubuntu:~/bigdata# cat /etc/profile.d/java.sh 
export PATH=/usr/local/jdk/bin:/root/bigdata/hadoop-3.3.0/bin:/root/bigdata/spark-3.0.1/bin:/root/bigdata/hive-3.1.3/bin:${PATH}

升级guava依赖为hadoop版本:

mv lib/guava-19.0.jar lib/guava-19.0.jar.bk 
ln -s  /root/bigdata/hadoop-3.3.0/share/hadoop/hdfs/lib/guava-27.0-jre.jar  /root/bigdata/hive-3.1.3/lib/guava-27.0-jre.jar

上述第一条命令先备份了Hive自带的guava依赖包,然后将hadoop自带的更高版本软链过来,这个版本一致性是Hive正常运行的关键之一。

2)安装MYSQL

hive的元数据服务是独立部署的,它基于mysql保存数据。可以使用apt命令在ubuntu环境安装oracle mysql:

apt-get install mysql-server

如果使用 mysql -h localhost -u root -p 登录时,提示 access denied,那需要找到和删除 mysql user 表中的一条 localhost 的特殊规则:

delete from user where User=’root’ and Host=’localhost’;
FLUSH PRIVILEGES;

接着创建hive数据库:

create database hive;

接着通过wget命令下载 JDBC mysql,并把该Jar放到hive的lib目录下(hive metastore服务将用该JDBC驱动连接mysql读写元数据):

wget https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.21/mysql-connector-java-8.0.21.jar
mv mysql-connector-java-8.0.21.jar lib

3)配置Hive

Hive会自动加载 conf/hive-site.xml 配置文件,官方在 conf/hive-default.xml.template 提供了一个模板文件,里面是 Hive 加载不到 hive-site.xml 时使用的默认值,可以参考 conf/hive-default.xml.template来填写 hive-site.xml,下面是一个配置好的样本(只配置了必要项):

root@ubuntu:~/bigdata/hive-3.1.3# cat conf/hive-site.xml 
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
        <property>
                <name>hive.cli.print.header</name>
                <value>true</value>
                <description>Whether to print the names of the columns in query output.</description>
        </property>
        <property>
                <name>javax.jdo.option.ConnectionURL</name>
                <value>jdbc:mysql://localhost:3306/hive</value>
        </property>
        <property>
                <name>javax.jdo.option.ConnectionDriverName</name>
                <value>com.mysql.cj.jdbc.Driver</value>
        </property>
        <property>
                <name>javax.jdo.option.ConnectionUserName</name>
                <value>root</value>
        </property>
        <property>
                <name>javax.jdo.option.ConnectionPassword</name>
                <value>xxxxx</value>
        </property>
        <property>
                <name>hive.metastore.uris</name>
                <value>thrift://localhost:9083</value>
                <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>
        </property>
</configuration>

其中核心的项目解释如下:

  • hive.cli.print.header:Hive命令行工具将打印table的表头,方便阅读结果
  • javax.jdo.option.ConnectionURL:数据库JDBC URL,这里就是mysql的Hive数据库
  • javax.jdo.option.ConnectionDriverName:JDBC类名,8.x版本Mysql jar的类名有所变化,需要注意
  • javax.jdo.option.ConnectionUserName:mysql用户名
  • javax.jdo.option.ConnectionPassword:mysql密码
  • hive.metastore.uris:启动metastore服务的监听地址

4)启动metastore服务

先执行Hive建表命令,完成mysql元数据建表:

bin/schematool -dbType mysql -initSchema

执行命令:

nohup hive –service metastore &

服务将监听在 localhost:9083 端口,生产环境需要让host是可以被其他服务器访问到的,因为访问metastore服务的客户端不一定在本机。

现在命令行使用Hive命令,将会自动根据 hive-site.xml 连接到 metastore 服务,运行Hive命令做一下测试:

root@ubuntu:~/bigdata/hive-3.1.3# hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/root/bigdata/hive-3.1.3/lib/log4j-slf4j-impl-2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/root/bigdata/hadoop-3.3.0/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Hive Session ID = f0d4bf60-d85f-456a-98fb-e904d50f5242

Logging initialized using configuration in jar:file:/root/bigdata/hive-3.1.3/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true
Hive Session ID = 959e0cda-f8eb-4fc1-b798-cb5175e735d2
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.

hive> show databases;
OK
database_name
default
Time taken: 0.516 seconds, Fetched: 2 row(s)
Hive命令过后进入,可以看到自带的default数据库,并且还提示Hive目前使用MR作为计算引擎,实际Hive建议开始使用spark或者tez作为SQL的底层计算引擎,未来最终会彻底取消MR。

目前继续使用MR作为计算引擎即可,Hive会根据hadoop命令自动找到hadoop和yarn配置文件,最终SQL是通过MR运行在yarn上完成计算的。

以上就是Hive的完整搭建过程,小伙伴们就可以欢快地开始使用Hive了。

2.Hive应用案例

本案例对视频网站的数据进行各种指标分析,为管理者提供决策支持。

1)需求描述

统计youtube影音视频网站的常规指标,各种TopN指标:

  • 统计视频观看数Top10
  • 统计视频类别热度Top10
  • 统计视频观看数Top20所属类别
  • 统计视频观看数Top50所关联视频的所属类别Rank
  • 统计每个类别中的视频热度Top10
  • 统计每个类别中视频流量Top10
  • 统计上传视频最多的用户Top10以及他们上传的视频
  • 统计每个类别视频观看数Top10

2)项目表字段

视频表

字段 备注 详细描述
video id 视频唯一id 11位字符串
uploader 视频上传者 上传视频的用户名String
age 视频年龄 视频在平台上的整数天
category 视频类别 上传视频指定的视频分类
length 视频长度 整形数字标识的视频长度
views 观看次数 视频被浏览的次数
rate 视频评分 满分5分
ratings 流量 视频的流量,整型数字
conments 评论数 一个视频的整数评论数
related ids 相关视频id 相关视频的id,最多20个

用户表

字段 备注 字段类型
uploader 上传者用户名 string
videos 上传视频数 int
friends 朋友数量 int

ETL原始数据

通过观察原始数据形式,可以发现,视频可以有多个所属分类,每个所属分类用 & 符号分割,且分割的两边有空格字符,同时相关视频也是可以有多个元素,多个相关视频又用 \t 进行分割。

为了分析数据时方便对存在多个子元素的数据进行操作,首先进行数据重组清洗操作。即:将所有的类别用 & 分割,同时去掉两边空格,多个相关视频 id 也使用 & 进行分割。

核心要做三件事情:

  • 长度不够9的删掉
  • 视频类别删掉空格
  • 该相关视频的分割符

3)准备工作

(1)创建 Hive 表

创建表:youtubevideo_oriyoutubevideo_user_ori
创建表:youtubevideo_orcyoutubevideo_user_orc

--创建: youtubevideo_ori表
create table youtubevideo_ori(
    videoId string, 
    uploader string, 
    age int, 
    category array<string>, 
    length int, 
    views int, 
    rate float, 
    ratings int, 
    comments int,
    relatedId array<string>)
row format delimited
fields terminated by "\t"
collection items terminated by "&"
stored as textfile;

--创建 youtubevideo_user_ori表:
create table youtubevideo_user_ori(
    uploader string,
    videos int,
    friends int)
row format delimited
fields terminated by "\t" 
stored as textfile;

--创建 youtubevideo_orc表:
create table youtubevideo_orc(
    videoId string, 
    uploader string, 
    age int, 
    category array<string>, 
    length int, 
    views int, 
    rate float, 
    ratings int, 
    comments int,
    relatedId array<string>)
row format delimited fields terminated by "\t" 
collection items terminated by "&" 
stored as orc;

--创建 youtubevideo_user_orc表:
create table youtubevideo_user_orc(
    uploader string,
    videos int,
    friends int)
row format delimited
fields terminated by "\t" 
stored as orc;

(2)导入ETL后的数据

youtubevideo_ori

load data inpath "/output/youtube_video" into table youtubevideo_ori;

youtubevideo_user_ori

load data inpath "/youtube_video/user" into table youtubevideo_user_ori;

(3)向ORC表插入数据

youtubevideo_orc

insert overwrite table youtubevideo_orc select * from youtubevideo_ori;

youtubevideo_user_orc

insert into table youtubevideo_user_orc select * from youtubevideo_user_ori;

3.业务分析

1)统计视频观看数 top10

思路:使用order by按照views字段做一个全局排序即可,同时设置只显示前10条。

SELECT   videoid,
         uploader,
         age,
         category,
         length,
         views,
         rate,
         ratings,
         comments
FROM     youtubevideo_orc
ORDER BY views DESC limit 10;

-- 方式2SELECT *

FROM  (
                SELECT   videoid ,
                         age,
                         category,
                         length,
                         views,
                         Row_number() OVER( ORDER BY views DESC) AS rn
                FROM     youtubevideo_orc )t
WHERE  t.rn <= 10;

2)统计视频类别热度Top10

思路:即统计每个类别有多少个视频,显示出包含视频最多的前10个类别。

  • ① 需要按照类别group by聚合,然后count组内的videoId个数即可。
  • ② 因为当前表结构为:一个视频对应一个或多个类别。所以如果要group by类别,需要先将类别进行列转行(展开),然后再进行count即可。
  • ③ 最后按照热度排序,显示前10条。
SELECT   category_name     AS category,
         Count(t1.videoid) AS hot
FROM     (
                SELECT videoid,
                       category_name
                FROM   youtubevideo_orc lateral view explode(category) t_catetory as category_name) t1
GROUP BY t1.category_name
ORDER BY hot DESC limit 10;

3)统计出视频观看数最高的20个视频的所属类别以及类别包含Top20视频的个数

思路:

  • ① 先找到观看数最高的20个视频所属条目的所有信息,降序排列
  • ② 把这20条信息中的category分裂出来(列转行)
  • ③ 最后查询视频分类名称和该分类下有多少个Top20的视频
SELECT   category_name     AS category,
         Count(t2.videoid) AS hot_with_views
FROM     (
                SELECT videoid,
                       category_name
                FROM   (
                                SELECT   *
                                FROM     youtubevideo_orc
                                ORDER BY views DESC limit 20) t1 lateral VIEW explode(category) t_catetory as category_name) t2
GROUP BY category_name
ORDER BY hot_with_views DESC;

4)统计每个类别中的视频热度Top10,以Music为例

思路:

  • ① 要想统计Music类别中的视频热度Top10,需要先找到Music类别,那么就需要将category展开,所以可以创建一张表用于存放categoryId展开的数据。
  • ② 向category展开的表中插入数据。
  • ③ 统计对应类别(Music)中的视频热度。
--创建表类别表:
CREATE TABLE youtubevideo_category
             (
                          videoid STRING,
                          uploader STRING,
                          age INT,
                          categoryid STRING,
                          length INT,
                          views  INT,
                          rate FLOAT,
                          ratings  INT,
                          comments INT,
                          relatedid ARRAY<string>
             )
             row format delimited fields terminated BY "\t" collection items terminated BY "&" stored AS orc;

--向类别表中插入数据:
INSERT INTO table youtubevideo_category
SELECT videoid,
       uploader,
       age,
       categoryid,
       length,
       views,
       rate,
       ratings,
       comments,
       relatedid
FROM   youtubevideo_orc lateral view explode(category) catetory AS categoryid;

--统计Music类别的Top10(也可以统计其他)
SELECT   videoid,
         views
FROM     youtubevideo_category
WHERE    categoryid = "Music"
ORDER BY views DESC limit 10;

-- 方式2SELECT *
FROM  (
                SELECT   videoid ,
                         age,
                         categoryid,
                         length,
                         views,
                         Row_number() OVER( ORDER BY views DESC) AS rn
                FROM     youtubevideo_category
                WHERE    categoryid = "music" )t
WHERE  t.rn <= 10;

5)统计每个类别中视频流量Top10

思路:

  • ① 创建视频类别展开表(categoryId列转行后的表)
  • ② 按照ratings排序即可
SELECT *
FROM  (SELECT videoid,
              age,
              categoryid,
              length,
              ratings,
              Row_number()
                OVER(
                  partition BY categoryid
                  ORDER BY ratings DESC) AS rn
       FROM   youtubevideo_category)t
WHERE  t.rn <= 10; 

6)统计上传视频最多的用户Top10以及他们上传的观看次数在前10的视频

思路:

  • ① 先找到上传视频最多的10个用户的用户信息
  • ② 通过uploader字段与youtubevideo_orc表进行join,得到的信息按照views观看次数进行排序即可。
--第一步:
SELECT *
FROM   youtubevideo_user_orc
ORDER  BY videos DESC
LIMIT  10;

--第二步:
SELECT t2.videoid,
       t2.uploader,
       t2.views,
       t2.ratings,
       t1.videos,
       t1.friends
FROM   (SELECT *
        FROM   youtubevideo_user_orc
        ORDER  BY videos DESC
        LIMIT  10) t1
       JOIN youtubevideo_orc t2
         ON t1.uploader = t2.uploader
ORDER  BY views DESC
LIMIT  20;

【大数据技术与处理】推荐阅读

ShowMeAI 系列教程推荐

ShowMeAI用知识加速每一次技术成长

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
92 1
|
1月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
65 0
|
1月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
135 0
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
60 0
|
1月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
28 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
1月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
57 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
1月前
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
29 1
ly~
|
1月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
90 2
|
1月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
40 3
|
1月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
35 1