About Druid - A Real-time Analytical Data Store

简介:
Druid是一个为流式数据设计的实时分析数据存储系统,包含4个组件,采用了冷热分离的结构:
Real-time Nodes
Historical Nodes
Broker Nodes
Coordinator Nodes
About Druid - A Real-time Analytical Data Store - 德哥@Digoal - PostgreSQL research

infoq里有一篇介绍druid的文章。

Druid is similiar to C-Store [38] and LazyBase [8] in that it has
two subsystems, a read-optimized subsystem in the historical nodes
and a write-optimized subsystem in real-time nodes. Real-time nodes
are designed to ingest a high volume of append heavy data, and do
not support data updates. Unlike the two aforementioned systems,
Druid is meant for OLAP transactions and not OLTP transactions.
Druid’s low latency data ingestion features share some similarities
with Trident/Storm [27] and Spark Streaming [45], however,
both systems are focused on stream processing whereas Druid is
focused on ingestion and aggregation. Stream processors are great
complements to Druid as a means of pre-processing the data before
the data enters Druid.
There are a class of systems that specialize in queries on top of
cluster computing frameworks. Shark [13] is such a system for
queries on top of Spark, and Cloudera’s Impala [9] is another system
focused on optimizing query performance on top of HDFS. Druid
historical nodes download data locally and only work with native
Druid indexes. We believe this setup allows for faster query latencies.
Druid leverages a unique combination of algorithms in its architecture.
Although we believe no other data store has the same set
of functionality as Druid, some of Druid’s optimization techniques
such as using inverted indices to perform fast filters are also used in
other data stores [26].

[参考]
目录
相关文章
|
分布式计算 Apache Spark
《How to Integrate Spark MLlib and Apache Solr to Build Real-Time Entity Type Recognition System for Better Query Understanding》电子版地址
How to Integrate Spark MLlib and Apache Solr to Build Real-Time Entity Type Recognition System for Better Query Understanding
92 0
《How to Integrate Spark MLlib and Apache Solr to Build Real-Time Entity Type Recognition System for Better Query Understanding》电子版地址
《Performance Characterization of In-Memory Data Analytics on a Scale-up Server》电子版地址
Performance Characterization of In-Memory Data Analytics on a Scale-up Server
83 0
《Performance Characterization of In-Memory Data Analytics on a Scale-up Server》电子版地址
《Fighting Cybercrime A Joint Task Force of Real-Time Data and Human Analytics》电子版地址
Fighting Cybercrime: A Joint Task Force of Real-Time Data and Human Analytics
88 0
《Fighting Cybercrime A Joint Task Force of Real-Time Data and Human Analytics》电子版地址
|
搜索推荐 数据挖掘 开发者
Data mining process| 学习笔记
快速学习 Data mining process。
Data mining process| 学习笔记
|
Apache 流计算
《Large-scale near-real-time (NRT) data analytics platform empowered by Apache Flink - Ying Xu & Kailash Hassan Dayanand》电子版地址
3. Large-scale near-real-time (NRT) data analytics platform empowered by Apache Flink - Ying Xu & Kailash Hassan Dayanand, Lyft的副本
111 0
《Large-scale near-real-time (NRT) data analytics platform empowered by Apache Flink - Ying Xu & Kailash Hassan Dayanand》电子版地址
Sap Ds Data is not available. Increase the time-out interval values in Debug | Options
Sap Ds Data is not available. Increase the time-out interval values in Debug | Options
140 0
|
传感器 数据采集 ice
Google Earth Engine ——LANDSAT 7 Collection 1 Tier 1 and Real-Time data DN values数据集
Google Earth Engine ——LANDSAT 7 Collection 1 Tier 1 and Real-Time data DN values数据集
149 0
Google Earth Engine ——LANDSAT 7 Collection 1 Tier 1 and Real-Time data DN values数据集
|
SQL 关系型数据库 MySQL
Influx Sql系列教程四:series/point/tag/field
influxdb中的一条记录point,主要可以分为三类,必须存在的time(时间),string类型的tag,以及其他成员field;而series则是一个measurement中保存策略和tag集构成;
414 0
|
SQL 存储 算法
The MemSQL Query Optimizer: A modern optimizer for real-time analytics in a distributed database
今天我们要介绍的MemSQL就采用这样一种新的形态(Oracle也变为了这种方式 ):即在做transformation时,要基于cost确定其是否可应用。 当然,本篇paper不止讲解了CBQT,还包括一些MemSQL优化器其他方面的介绍,包括一个有意思的heurstic based bushy join的方案。
414 0
The MemSQL Query Optimizer: A modern optimizer for real-time analytics in a distributed database

热门文章

最新文章