深度学习教程 | 吴恩达专项课程 · 全套笔记解读

简介: 本篇内容是组织的「深度学习原理知识大全」系列教程入口,教程依托吴恩达老师《深度学习专项课程》,对内容做了重新梳理与制作,以更全面和直观的图文方式,对深度学习涉及的知识、模型、原理、应用领域等进行详解

收藏ShowMeAI查看更多精彩内容


引言

本篇内容是ShowMeAI组织的「深度学习原理知识大全」系列教程入口,本教程依托于吴恩达老师的《深度学习专项课程》,对内容做了重新梳理与制作,以更全面和直观的图文方式,对深度学习涉及的知识、模型、原理、应用领域等进行详解。

内容覆盖:深度学习基础知识、神经网络、反向传播、优化算法(梯度下降、sgd、RMSProp、adam等)、梯度消失/爆炸与处理、模型问题诊断、神经网络效果优化、深度神经网络、超参数调优、Batch Normalization、标签错误与数据不匹配的处理办法、计算机视觉、CNN、卷积神经网络、目标检测、人脸识别、图像神经风格转换、序列建模、循环神经网络、RNN、自然语言处理、词嵌入、Seq2seq模型、注意力机制等。

教程地址

点击查看完整教程学习路径

内容章节

1.深度学习概论

深度学习概论

2.神经网络基础

神经网络基础

3.浅层神经网络

浅层神经网络

4.深层神经网络

深层神经网络

5.深度学习的实用层面

深度学习的实用层面

6.神经网络优化算法

神经网络优化算法

7.网络优化:超参数调优、正则化、批归一化和程序框架

网络优化:超参数调优、正则化、批归一化和程序框架

8.AI应用实践策略(上)

AI应用实践策略(上)

9.AI应用实践策略(下)

AI应用实践策略(下)

10.卷积神经网络解读

卷积神经网络解读

11.经典CNN网络实例详解

经典CNN网络实例详解

12.CNN应用:目标检测

CNN应用:目标检测

13.CNN应用:人脸识别和神经风格转换

CNN应用:人脸识别和神经风格转换

14.序列模型与RNN网络

序列模型与RNN网络

15.自然语言处理与词嵌入

自然语言处理与词嵌入

16.Seq2seq序列模型和注意力机制

Seq2seq序列模型和注意力机制

ShowMeAI系列教程推荐

目录
相关文章
|
1月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
95 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
1月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
62 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
1月前
|
机器学习/深度学习
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
54 2
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
101 1
深度学习环境搭建笔记(一):detectron2安装过程
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
165 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
深度学习笔记(十四):Transormer知识总结
关于深度学习中Transformer模型的知识总结,涵盖了Self-attention机制、QKV、Multi-head attention、位置编码和并行运算等关键概念,以及如何在PyTorch中实现Self-attention。
59 1
|
1月前
|
机器学习/深度学习 编解码 计算机视觉
深度学习笔记(十一):各种特征金字塔合集
这篇文章详细介绍了特征金字塔网络(FPN)及其变体PAN和BiFPN在深度学习目标检测中的应用,包括它们的结构、特点和代码实现。
151 0
|
11天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
43 9
|
7天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
8天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。