2021-10-30
只出现一次的数字 III
给定一个整数数组 nums,其中恰好有两个元素只出现一次,其余所有元素均出现两次。 找出只出现一次的那两个元素。你可以按 任意顺序 返回答案。
进阶:你的算法应该具有线性时间复杂度。你能否仅使用常数空间复杂度来实现?
示例 1:
输入:nums = [1,2,1,3,2,5]
输出:[3,5]
解释:[5, 3] 也是有效的答案。
示例 2:
输入:nums = [-1,0]
输出:[-1,0]
示例 3:
输入:nums = [0,1]
输出:[1,0]
提示:
2 <= nums.length <= 3 * 104
-231 <= nums[i] <= 231 - 1
除两个只出现一次的整数外,nums 中的其他数字都出现两次
题解
本题就是用一个哈希表来简单的使用,把每个不同的元素都放在哈希表中,然后直接使用一个循环,循环nums数组里面的元素,如果多余的话直接加一就可以,最后返回等于的元素就是我们想要的元素。
代码
class Solution: def singleNumber(self, nums: List[int]) -> List[int]: dit = {} res =[] for i in set(nums): dit[i] = 0 for i in nums: dit[i]+=1 for i in dit: if dit[i] == 1: res.append(i) return res
增量元素之间的最大差值
给你一个下标从 0 开始的整数数组 nums ,该数组的大小为 n ,请你计算 nums[j] - nums[i] 能求得的 最大差值 ,其中 0 <= i < j < n 且 nums[i] < nums[j] 。
返回 最大差值 。如果不存在满足要求的 i 和 j ,返回 -1 。
示例 1:
输入:nums = [7,1,5,4]
输出:4
解释:
最大差值出现在 i = 1 且 j = 2 时,nums[j] - nums[i] = 5 - 1 = 4 。
注意,尽管 i = 1 且 j = 0 时 ,nums[j] - nums[i] = 7 - 1 = 6 > 4 ,但 i > j 不满足题面要求,所以 6 不是有效的答案。
示例 2:
输入:nums = [9,4,3,2]
输出:-1
解释:
不存在同时满足 i < j 和 nums[i] < nums[j] 这两个条件的 i, j 组合。
示例 3:
输入:nums = [1,5,2,10]
输出:9
解释:
最大差值出现在 i = 0 且 j = 3 时,nums[j] - nums[i] = 10 - 1 = 9 。
题解
本题最核心的就是i<j所以这个是一个顺序比较,我们可以直接使用不同的位数相减然后返回max这样就可以直接找出最大值,本题是力扣和字节的一个周赛题,大家也可以来试一试!!!
代码
class Solution: def maximumDifference(self, nums: List[int]) -> int: ans = -1 for i in range(1, len(nums)): ans = max(ans, nums[i] -min(nums[0:i])) return ans if ans > 0 else -1
网格游戏
给你一个下标从 0 开始的二维数组 grid ,数组大小为 2 x n ,其中 grid[r][c] 表示矩阵中 (r, c) 位置上的点数。现在有两个机器人正在矩阵上参与一场游戏。
两个机器人初始位置都是 (0, 0) ,目标位置是 (1, n-1) 。每个机器人只会 向右 ((r, c) 到 (r, c + 1)) 或 向下 ((r, c) 到 (r + 1, c)) 。
游戏开始,第一个 机器人从 (0, 0) 移动到 (1, n-1) ,并收集路径上单元格的全部点数。对于路径上所有单元格 (r, c) ,途经后 grid[r][c] 会重置为 0 。然后,第二个 机器人从 (0, 0) 移动到 (1, n-1) ,同样收集路径上单元的全部点数。注意,它们的路径可能会存在相交的部分。
第一个 机器人想要打击竞争对手,使 第二个 机器人收集到的点数 最小化 。与此相对,第二个 机器人想要 最大化 自己收集到的点数。两个机器人都发挥出自己的 最佳水平 的前提下,返回 第二个 机器人收集到的 点数 。
示例 1:
输入:grid = [[2,5,4],[1,5,1]]
输出:4
解释:第一个机器人的最佳路径如红色所示,第二个机器人的最佳路径如蓝色所示。
第一个机器人访问过的单元格将会重置为 0 。
第二个机器人将会收集到 0 + 0 + 4 + 0 = 4 个点。
示例 2:
输入:grid = [[3,3,1],[8,5,2]]
输出:4
解释:第一个机器人的最佳路径如红色所示,第二个机器人的最佳路径如蓝色所示。
第一个机器人访问过的单元格将会重置为 0 。
第二个机器人将会收集到 0 + 3 + 1 + 0 = 4 个点。
示例 3:
输入:grid = [[1,3,1,15],[1,3,3,1]]
输出:7
解释:第一个机器人的最佳路径如红色所示,第二个机器人的最佳路径如蓝色所示。
第一个机器人访问过的单元格将会重置为 0 。
第二个机器人将会收集到 0 + 1 + 3 + 3 + 0 = 7 个点。
提示:
grid.length == 2
n == grid[r].length
1 <= n <= 5 * 104
1 <= grid[r][c] <= 105
题解
本题建议参考官方题解,我这个我也是半懂半不懂得。
代码
class Solution: def gridGame(self, grid: List[List[int]]) -> int: pre,suf = [0],[0] n = len(grid[0]) for i in range(n): pre.append(pre[-1] + grid[1][i]) for i in range(n - 1,-1,-1): suf.append(suf[-1] + grid[0][i]) suf.reverse() ans = float('inf') for i in range(n): #左侧剩余分数 lleft = pre[i] # 右侧剩余分数 rleft = suf[i + 1] ans = min(ans,max(lleft,rleft)) return ans