计算机视觉教程2-7:天使与恶魔?图文详解图像形态学运算(附代码)

简介: 计算机视觉教程2-7:天使与恶魔?图文详解图像形态学运算(附代码)

目录

1 图像形态学运算

在计算机视觉教程2-2:详解图像滤波算法(附Python实战)中我们将图像滤波进行了以下分类:


邻域滤波

线性滤波

非线性滤波

频域滤波

低通滤波

高通滤波

在非线性滤波中,之前只介绍了中值滤波,事实上,还有一类非常常用的非线性滤波方法,称为图像形态学运算(Morphological operations)。


图像形态学运算是一类基于图像形状运算的非线性滤波技术,其基本思想是利用一些特殊的结构元来测量或提取图像中相应的形状和特征,以便进一步进行图像分析和处理。这里结构元素就相当于我们在滤波中所涉及到的模板——一个给定像素的矩阵,这个矩阵形状可以任意,但一般是正方形。


接下来,我们分析一下几种经典的图像形态学运算算法,再编程测试一下~

2 腐蚀

腐蚀就是用局部灰度最小值代替目标像素值实现对高亮区域的腐蚀。

举个例子,有这样一张图像和这样一个结构元素,其中结构元素的蓝色方块表示的是模板原点。


image.png

下面我们开始遍历这张图像,到下图这个位置的时候,模板内灰度最小值是灰色方格的像素,因此替换掉模板原点中蓝色方格处的像素为灰色(原本为白色,被腐蚀了)

image.png

就这样遍历完这张图像得到

image.png

3 膨胀

膨胀就是用局部灰度最大值代替目标像素值实现对高亮区域的膨胀。

和腐蚀类似,遍历这张图像,到下图这个位置的时候,模板内灰度最大值是白色方格的像素,因此替换掉模板原点中蓝色方格处的像素为白色(原本为灰色,膨胀了)

image.png

就这样遍历完这张图像得到膨胀的最终结果为

image.png

上个实物图感受下腐蚀和膨胀的效果

image.png

4 开运算与闭运算

理解了图像腐蚀与膨胀,那么开闭运算就很容易了

  • 开运算(Opening):先腐蚀再膨胀
  • 闭运算(Closing):先膨胀再腐蚀

开运算能够除有效去除孤立点、毛刺和小桥;闭运算能够填平小孔,弥合缝隙

image.png

上图假设灰色区域为高亮。

5 顶帽运算与底帽运算

顶帽运算与底帽运算是用于表征开闭运算与原图像间差异的运算,类似边缘检测的梯度差

  • 图像顶帽运算:表征原图像与开运算得到的图像之间的区别
  • 图像底帽运算:表征原图像与闭运算得到的图像之间的区别

6 恶魔与天使

先看看原图,一对可爱的猫咪

image.png

进行腐蚀操作,首先创建结构元

int eSize = 3;  //结构元尺寸
int s = eSize * 2 + 1;
Mat structureElement = getStructuringElement(MORPH_RECT, Size(s, s), Point(-1, -1)); 

接着用结构元遍历原图,OpenCV有封装好的API,直接调用即可

erode(src, dst, structureElement);
imshow("腐蚀操作后:", dst);

得到腐蚀后的图像如下所示,眼睛空洞洞的,有点恐怖片内味了,这还是原来那两只猫吗?

image.png

膨胀操作类似于腐蚀,也有OpenCV封装好的API

dilate(srcImg, dstImg, structureElement, Point(-1, -1), 1);
imshow("膨胀操作后:", dstImg);

膨胀出来的小猫就显得轻松很多,感觉升华了。

image.png

今后要是想有一张照片创造光与影、正与邪、天使与恶魔两种反差,可以考虑采用图像腐蚀和膨胀操作。


限于篇幅,无法再粘贴代码,完整的工程文件请关注下方二维码回复“CV006”领取,已经给你们打包好了哦~


🚀 计算机视觉基础教程说明


章号                                    内容

 0                              色彩空间与数字成像

 1                              计算机几何基础

 2                              图像增强、滤波、金字塔

 3                              图像特征提取

 4                              图像特征描述

 5                              图像特征匹配

 6                              立体视觉

 7                              项目实战


🔥 更多精彩专栏:


《机器人原理与技术》

《ROS从入门到精通》

《计算机视觉教程》

《机器学习》

《嵌入式系统》

《数值优化方法》


目录
相关文章
|
3月前
|
机器学习/深度学习 编解码 自动驾驶
计算机视觉之图像到图像的翻译
图像到图像的翻译(Image-to-Image Translation)是指将一种图像从一种表示转换为另一种表示的过程。该任务的目标是在保证图像语义信息的前提下,将图像风格、颜色或其他视觉特征进行转换。该技术在计算机视觉领域具有广泛应用,例如图像风格迁移、图像修复、图像增强、超分辨率、语义分割等。
76 4
|
3月前
|
机器学习/深度学习 人工智能 测试技术
AI计算机视觉笔记二十五:ResNet50训练部署教程
该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。
|
7月前
|
编解码 边缘计算 自然语言处理
2024年5月计算机视觉论文推荐:包括扩散模型、视觉语言模型、图像编辑和生成、视频处理和生成以及图像识别等各个主题
五月发布的计算机视觉领域重要论文涵盖了扩散模型、视觉语言模型、图像生成与编辑及目标检测。亮点包括:1) Dual3D提出双模式推理策略,实现高效文本到3D图像生成;2) CAT3D利用多视图扩散模型创建3D场景,仅需少量图像;3) Hunyuan-DiT是多分辨率的中文理解扩散Transformer,可用于多模态对话和图像生成;4) 通过潜在扩散模型从EEG数据重建自然主义音乐,展示复杂音频重建潜力。此外,还有关于视觉语言模型和图像编辑的创新工作,如BlobGEN用于合成具有控制性的图像。
279 3
|
5月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
6月前
|
算法 计算机视觉 Python
openCV 3计算机视觉 Python语言实现 笔记 第三章 使用OpenCV 3处理图像
openCV 3计算机视觉 Python语言实现 笔记 第三章 使用OpenCV 3处理图像
|
7月前
|
机器学习/深度学习 自动驾驶 算法
【计算机视觉+自动驾驶】二、多任务深度学习网络并联式、级联式构建详细讲解(图像解释 超详细必看)
【计算机视觉+自动驾驶】二、多任务深度学习网络并联式、级联式构建详细讲解(图像解释 超详细必看)
329 1
|
7月前
|
机器学习/深度学习 计算机视觉 Python
【Python计算机视觉】项目实战之图像增强imguag对关键点变换、标注框变化(附源码 超详细必看)
【Python计算机视觉】项目实战之图像增强imguag对关键点变换、标注框变化(附源码 超详细必看)
218 0
|
算法 vr&ar 计算机视觉
[笔记]Python计算机视觉编程《二》 基本的图像操作和处理
[笔记]Python计算机视觉编程《二》 基本的图像操作和处理
|
存储 算法 程序员
[笔记]Python计算机视觉编程《一》 基本的图像操作和处理(四)
[笔记]Python计算机视觉编程《一》 基本的图像操作和处理(四)
134 0
|
存储 Serverless C语言
[笔记]Python计算机视觉编程《一》 基本的图像操作和处理(三)
[笔记]Python计算机视觉编程《一》 基本的图像操作和处理(三)

热门文章

最新文章

下一篇
DataWorks