OpenCV滤波器 龙门石窟篇【Python-Open_CV系列(九)】(均值滤波器、中值滤波器、高斯滤波器、双边滤波器)(上)

简介: OpenCV滤波器 龙门石窟篇【Python-Open_CV系列(九)】(均值滤波器、中值滤波器、高斯滤波器、双边滤波器)

文章目录

1. 滤波器

1.1 什么是滤波器?

1.2 关于滤波核

1.3 素材选择

2.均值滤波器 cv2.blur()

2.1 语法简介

2.2 代码示例

2.2.1 3×3 滤波核为例

2.2.2 5×5 滤波核为例

2.2.3 10×10滤波核为例

3. 中值滤波器 cv2.medianBlur()

代码示例

4. 高斯滤波器 cv2.GaussianBlur()

5. 双边滤波器 cv2.bilateralFilter()

1. 滤波器

1.1 什么是滤波器?

  滤波器是对图像做平滑处理 的一种常用工具。


  平滑处理即在尽可能地保留原图像信息的情况下,对像素值进行微调,使邻近的像素值之间,值的大小趋于“平滑”,以去除图像内的噪声、降低细节层次信息等的一系列的操作过程。本篇blog将为大家展示OpenCV中的均值滤波器中值滤波器高斯滤波器双边滤波器


  滤波器的算法逻辑为,指定一个滤波核的大小(该大小表示参与计算的像素数据的范围),以图像中的每一个像素都作为波的核心,通过该范围内的数据,以一定的计算方式进行计算,将计算结果该值赋值给该像素。

1.2 关于滤波核

  以大小为n×n的滤波核为例,对于每一个像素数据,我们可以在数组中得到以一个像素为中心的n×n的矩阵,此即参与计算的数据的范围(边界)。这样的矩阵结构即被称为滤波核。

1.3 素材选择

使用图像《龙门石窟》(longmen.jpg) shape:(350, 600, 3)

image.png

2.均值滤波器 cv2.blur()

2.1 语法简介

均值滤波器,也称低通滤波器

顾名思义,均值滤波器即对滤波核内的数据求均值,然后将这个值赋值给矩阵核心位置。

均值滤波器可以使用cv2.blur() 方法实现


cv2.blur()的语法:


dst = blur(src, ksize, dst=None, anchor=None, borderType=None)


其中


scr 即图像


ksize 滤波核大小。使用一个元组表示,形如(a, b),a表示height(高度),b表示width(宽度)。


anchor 波核锚点


borderType 边界类型


下边以3×3,5×5,10×10三种滤波核为例,分别展示图像经过均值滤波器处理后的效果。

2.2 代码示例

2.2.1 3×3 滤波核为例

import cv2
img = cv2.imread("longmen.jpg")
dst1 = cv2.blur(img, (3, 3))
cv2.imshow("3*3", dst1)
cv2.waitKey()
cv2.destroyAllWindows()

滤波效果如下:

image.png

2.2.2 5×5 滤波核为例

import cv2
img = cv2.imread("longmen.jpg")
dst2 = cv2.blur(img, (5, 5))
cv2.imshow("5*5", dst2)
cv2.waitKey()
cv2.destroyAllWindows()

滤波效果如下:

image.png

2.2.3 10×10滤波核为例

import cv2
img = cv2.imread("longmen.jpg")
dst3 = cv2.blur(img, (10, 10))
cv2.imshow("10*10", dst3)
cv2.waitKey()
cv2.destroyAllWindows()

image.png

可以看出,滤波核大小越大,图像越趋于模糊。

3. 中值滤波器 cv2.medianBlur()

中值滤波器,即对滤波核内所有数据排序,将中间值赋值给滤波核核心位置的数字。

medianBlur(src, ksize, dst=None)


其中 ksize必须是奇数,是偶数的话会发生报错。

不同于均值滤波器的方法,cv2.blur(),cv2.blur()的ksize参数是一个元组,而cv2.blur()的ksize参数是一个数值。

代码示例

import cv2
img = cv2.imread("longmen.jpg")
dst1 = cv2.medianBlur(img, 3)
cv2.imshow("3*3", dst1)
cv2.waitKey()
cv2.destroyAllWindows()

滤波后效果如下:

image.png

目录
相关文章
|
6天前
|
机器学习/深度学习 监控 自动驾驶
如何使用 Python 和 OpenCV 进行实时目标检测
如何使用 Python 和 OpenCV 进行实时目标检测
|
3天前
|
算法 计算机视觉 Python
python+opencv实现车牌定位
python+opencv实现车牌定位
10 0
|
6天前
|
机器学习/深度学习 监控 算法
使用Python和OpenCV实现简单的人脸识别系统
使用Python和OpenCV实现简单的人脸识别系统
14 0
|
10天前
|
算法 计算机视觉 Python
openCV 3计算机视觉 Python语言实现 笔记 第4章 深度估计与分割
openCV 3计算机视觉 Python语言实现 笔记 第4章 深度估计与分割
|
10天前
|
算法 计算机视觉 Python
openCV 3计算机视觉 Python语言实现 笔记 第三章 使用OpenCV 3处理图像
openCV 3计算机视觉 Python语言实现 笔记 第三章 使用OpenCV 3处理图像
|
10天前
|
计算机视觉 索引 Python
openCV 3计算机视觉 Python语言实现 笔记__第二章 处理文件、摄像头和图形用户界面
openCV 3计算机视觉 Python语言实现 笔记__第二章 处理文件、摄像头和图形用户界面
|
10天前
|
机器人 计算机视觉 Python
openCV 3计算机视觉 Python语言实现 笔记__第一章
openCV 3计算机视觉 Python语言实现 笔记__第一章
|
11天前
|
机器学习/深度学习 算法 数据库
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
|
11天前
|
机器学习/深度学习 算法 数据可视化
基于OpenCV的人脸检测软件(含Python源码+UI界面+图文详解)
基于OpenCV的人脸检测软件(含Python源码+UI界面+图文详解)
|
1月前
|
数据采集 Java 数据挖掘
最新Python+OpenCV+dlib汽车驾驶员疲劳驾驶检测!,2024年最新网易云java面试
最新Python+OpenCV+dlib汽车驾驶员疲劳驾驶检测!,2024年最新网易云java面试
最新Python+OpenCV+dlib汽车驾驶员疲劳驾驶检测!,2024年最新网易云java面试