OpenCV图像几何变换专题(缩放、翻转、仿射变换及透视)【python-Open_CV系列(五)】(上)

简介: OpenCV图像几何变换专题(缩放、翻转、仿射变换及透视)【python-Open_CV系列(五)】

文章目录

准备图片

1. 缩放 cv2.resize()方法

2. 翻转 cv2.flip()方法

3. 仿射变换 warpAffine()方法

3.1 平移

3.2 旋转

3.3 倾斜

4. 透视


准备图片

选择一张shape为(500,500,3)的梵高的《星月夜》以便示例。

1.png

1. 缩放 cv2.resize()方法

cv2.resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)


  • src 原图(的数组)
  • dsize: 输出图像的大小 格式:(a,b)。
    设定dsize后就无需再设置fx和fy
  • fx 可选参数 水平方向缩放比
  • fy 可选参数 垂直方向缩放比


image.png

import cv2
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.resize(img, (200, 200))
dst2 = cv2.resize(img, (900, 900))
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()

执行结果如图所示,相比原图,图像得到了指定大小的缩小与放大。

1.png

使用fx和fy参数,则需要手动把dsize设为None

import cv2
img = cv2.imread("The_Starry_Night.jpg")  
# 将宽缩小到原来的1/3、高缩小到原来的1/2
dst3 = cv2.resize(img, None, fx=1 / 3, fy=1 / 2) 
# 将宽高扩大2倍
dst4 = cv2.resize(img, None, fx=2, fy=2)  
cv2.imshow("img", img)
cv2.imshow("dst3", dst3) 
cv2.imshow("dst4", dst4) 
cv2.waitKey() 
cv2.destroyAllWindows()  

结果呈现:

2.png

2. 翻转 cv2.flip()方法

flip(src, flipCode, dst=None)


  • src 图像(数组)
  • flipCode 翻转代码。可以是0,正数,负数。0表示沿X轴(水平方向的轴)翻转。1表示沿Y轴(竖直方向的轴)翻转。
    负数表示同时沿X轴和Y轴翻转。


讲原图经过着三种翻转后,与原图拼在一块,呈现出了这种奇观:

import cv2
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()
cv2.destroyAllWindows()

image.png

将翻转结果放在同一张画布中

import cv2
import numpy as np
img = cv2.imread("The_Starry_Night.jpg")
dst1 = cv2.flip(img, 0)
dst2 = cv2.flip(img, 1)
dst3 = cv2.flip(img, -1)
a, b, c = img.shape
canvas = np.ones((2 * a, 2 * b, c), np.uint8) * 255
canvas[0:b, 0:a] = img
canvas[b:2*b, 0:a] = dst1
canvas[0:b, a:2*a] = dst2
canvas[b:2*b, a:2*a] = dst3
cv2.imshow("pic", canvas)
cv2.waitKey()
cv2.destroyAllWindows()
# 保存图片
# cv2.imwrite("final_pic", canvas)

结果呈现:

image.png

3. 仿射变换 warpAffine()方法

常见的仿射变换有平移,旋转和倾斜变换。

仿射变换使用cv2.warpAffine()方法完成

warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None)


  • src 原图


  • M 是一个二行三列的矩阵,也称仿射矩阵。warpAffine方法根据此矩阵的值来变换像素的位置。

M = [[a, b, c], [d, e, f]],则像素的变换公式为:

X = x × a + y × b + c

Y = x × d + y × e + f

其中x,y指原像素的x、y轴坐标。X,Y指变换后的X,Y坐标。


  • dsize 输出图像的尺寸。(不带放缩,增大的部分用黑色色素(0)填充)


这三个参数是常用的参数。其余参数建议使用默认值。

flags表示插入方式,borderMode是边界类型,borderValue表示边界值(默认0)。dst表示反射变换后输出的图像。

目录
相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
84 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
6月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
183 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
3月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
233 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
4月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
100 3
|
5月前
|
存储 JSON API
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
189 7
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
|
6月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
199 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
6月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
174 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
5月前
|
JSON API 数据格式
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
122 0
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
|
6月前
|
存储 安全 算法
显微镜下的安全战!Python加密解密技术,透视数字世界的每一个安全细节
【9月更文挑战第7天】在数字世界中,数据安全至关重要。Python加密解密技术如同显微镜下的精密工具,确保信息的私密性和完整性。以大型医疗机构为例,通过AES和RSA算法的结合,既能高效加密大量医疗数据,又能安全传输密钥,防止数据泄露。以下是使用Python的`pycryptodome`库实现AES加密和RSA密钥交换的简化示例。此方案不仅提高了数据安全性,还为数字世界的每个细节提供了坚实保障,引领我们迈向更安全的未来。
61 1
|
7月前
|
机器学习/深度学习 人工智能 TensorFlow
利用Python和TensorFlow实现简单图像识别
【8月更文挑战第31天】在这篇文章中,我们将一起踏上一段探索人工智能世界的奇妙之旅。正如甘地所言:“你必须成为你希望在世界上看到的改变。” 通过实践,我们不仅将学习如何使用Python和TensorFlow构建一个简单的图像识别模型,而且还将探索如何通过这个模型理解世界。文章以通俗易懂的方式,逐步引导读者从基础到高级,体验从编码到识别的整个过程,让每个人都能在AI的世界中看到自己的倒影。

热门文章

最新文章