3.1 平移
以将《星月夜》向左平移50个像素,向下平移100个像素为例。
则M数组应写为[[1, 0, 50], [0, 1, 100]]:
import cv2 import numpy as np img = cv2.imread("The_Starry_Night.jpg") rows = len(img) cols = len(img[0]) M = np.float32([[1, 0, 50], [0, 1, 100]]) dst = cv2.warpAffine(img, M, (cols, rows)) cv2.imshow("img", img) cv2.imshow("dst", dst) cv2.waitKey() cv2.destroyAllWindows()
如图所示,图像按照我们的预期成功被平移。
只是这样得到的图像有色素损失,我们丢失了超出画布之外的数据。
为了避免损失,可以取设置dsize参数来控制输出图像的大小。
修改后的代码如下:
import cv2 import numpy as np img = cv2.imread("The_Starry_Night.jpg") rows = len(img) cols = len(img[0]) M = np.float32([[1, 0, 50], [0, 1, 100]]) dst = cv2.warpAffine(img, M, (cols+200, rows+200)) cv2.imshow("img", img) cv2.imshow("dst", dst) cv2.waitKey() cv2.destroyAllWindows()
优化后的程序执行效果:
3.2 旋转
旋转也是通过M矩阵来实现的,这个矩阵的运算较复杂,
OpenCV提供了getRotationMatrix2D()方法来计算旋转操作的M矩阵
getRotationMatrix2D(center, angle, scale)
- center 指旋转中心的坐标
- angle指旋转的角度
- scale值缩放的比例。(旋转过程支持缩放)
import cv2 img = cv2.imread("The_Starry_Night.jpg") rows = len(img) cols = len(img[0]) center = (rows / 2, cols / 2) M = cv2.getRotationMatrix2D(center, 30, 0.8) dst = cv2.warpAffine(img, M, (cols, rows)) cv2.imshow("img", img) cv2.imshow("dst", dst) cv2.waitKey() cv2.destroyAllWindows()
旋转效果如图所示:
3.3 倾斜
OpenCV需要定位到图像的三个点的位置来计算倾斜效果,即左上角,右上角和左下角。
图像的倾斜也是根据M矩阵实现,得出矩阵的运算较复杂,通过getAffineTransform 方法实现。
语法
getAffineTransform(src, dst)
- src是原图像的左上角,右上角和左下角三个点的坐标。三维数组格式,形如[[a, b], [c, d], [e, f]]。
- dst是倾斜后这三个点预期的坐标。格式同上。
要保持左上,右下,左下三个点的顺序不能乱。
以将《星月夜》保持左下角和右上角坐标不变,左上角((0,0)处)向右移动150个像素长度。
代码如下:
import cv2 import numpy as np img = cv2.imread("The_Starry_Night.jpg") rows = len(img) cols = len(img[0]) p1 = np.array([[0, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32) p2 = np.array([[150, 0], [cols - 1, 0], [0, rows - 1]], dtype=np.float32) M = cv2.getAffineTransform(p1, p2) dst = cv2.warpAffine(img, M, (cols, rows)) cv2.imshow('img', img) cv2.imshow('dst', dst) cv2.waitKey() cv2.destroyAllWindows()
程序执行效果如下:
4. 透视
透视的实现使用的是warpPerspective()方法,而不再是用于平移、旋转、倾斜的warpAffine()方法。
使用warpPerspective()方法也需要通过M矩阵来计算透视效果,计算透视的M矩阵可以使用getPerspectiveTransform()方法。
getPerspectiveTransform(src, dst, solveMethod=None)
该方法常用的参数有两个,分别为原图的四个点的坐标(scr) 和 透视后四个点的坐标(dst)。Opcv需要通过定位图像的这四个点来计算透视效果。四个点依次为左上,右上,左下,右下。
坐标格式为二维数组格式,形如[[a, b],[c, d],[e, f],[g, h]]。
示例代码如下:
import cv2 import numpy as np img = cv2.imread("The_Starry_Night.jpg") rows = len(img) cols = len(img[0]) # 原图的四点坐标 p1 = np.zeros((4, 2), np.float32) p1[0] = [0, 0] p1[1] = [cols - 1, 0] p1[2] = [0, rows - 1] p1[3] = [cols - 1, rows - 1] # 透视后的四点坐标 p2 = np.zeros((4, 2), np.float32) p2[0] = [150, 0] p2[1] = [cols - 150, 0] p2[2] = [0, rows - 1] # 不变 p2[3] = [cols - 1, rows - 1] # 不变 M = cv2.getPerspectiveTransform(p1, p2) dst = cv2.warpPerspective(img, M, (cols, rows)) cv2.imshow('The_Starry_Night', img) cv2.imshow('The_Starry_Night2', dst) cv2.waitKey() cv2.destroyAllWindows()
展示原图和透视后的图像效果: