二、简单线性回归模型(计量经济学学习笔记)(下)

简介: 二、简单线性回归模型(计量经济学学习笔记)(下)

③拟合优度的度量

所估计样本回归线对样本观测数据拟合的优劣程度,称为样本回归线的拟合优度。


3.1总变差的分解


在这里插入图片描述

3.2可决系数

TSS=ESS+RSS
在这里插入图片描述


3.3可决系数与相关系数的关系


在这里插入图片描述

④回归系数的假设检验和区间估计

4.1 OLS估计的分布性质


在这里插入图片描述

4.2 回归系数的假设检验

对回归系数假设检验的基本思路是,在所估计样本的回归系数概率分布性质已确定的基础上,在对总体回归系数某种原假设(或称零假设)成立的条件下,利用适当的有明确概率分布的统计量和给定的显著性水平α,构造一个小概率事件。判断原假设合理与否,是基于“小概率事件不会发生”的原理。如果小概率事件发生了,就拒绝原假设,不拒绝备择假设。


在这里插入图片描述

4.3回归系数的区间估计

参数的区间估计与假设检验既有联系也有区别。
假设检验是根据已知样本观测值,判断它是否与总体参数作的某一个假设相一致;而参数区间估计主要回答什么样的区间包含总体参数真实值以及可靠程度问题。
对回归系数的区间估计,可分为以下三种情况:


在这里插入图片描述
目录
相关文章
|
4月前
|
机器学习/深度学习 算法 Python
线性回归模型学习
【9月更文挑战第3天】
41 5
|
8月前
|
机器学习/深度学习 数据采集 数据挖掘
【机器学习】普通最小二乘法和ridge回归有什么区别?
【5月更文挑战第21天】【机器学习】R-squared系数有什么缺点?如何解决?【机器学习】普通最小二乘法和ridge回归有什么区别?
|
8月前
|
算法 C++ Python
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
|
8月前
|
数据可视化 数据建模 大数据
MCMC的rstan贝叶斯回归模型和标准线性回归模型比较
MCMC的rstan贝叶斯回归模型和标准线性回归模型比较
|
8月前
R语言stan进行基于贝叶斯推断的回归模型
R语言stan进行基于贝叶斯推断的回归模型
|
8月前
|
算法 Windows
R语言通过WinBUGS对MGARCH和MSV模型进行贝叶斯估计和比较
R语言通过WinBUGS对MGARCH和MSV模型进行贝叶斯估计和比较
|
资源调度
数据科学与统计学之使用JAGS训练贝叶斯回归模型
使用JAGS训练贝叶斯回归模型
127 0
|
机器学习/深度学习 数据可视化 算法
机器学习系列6 使用Scikit-learn构建回归模型:简单线性回归、多项式回归与多元线性回归
在本文中,我们以美国南瓜数据为例,讲解了三种线性回归的原理与使用方法,探寻数据之间的相关性,并构建了6种线性回归模型。将准确率从一开始的0.04提升到0.96.
363 0
|
机器学习/深度学习 算法 开发者
回归模型参数估计-5| 学习笔记
快速学习回归模型参数估计-5。
回归模型参数估计-5| 学习笔记
|
机器学习/深度学习 算法 开发者
回归模型参数估计-3| 学习笔记
快速学习回归模型参数估计-3。
回归模型参数估计-3| 学习笔记