Python 自动化测试(三): pytest 参数化测试用例构建

简介: ![](https://ceshiren.com/uploads/default/original/3X/4/3/439f9a297bb4fd49a0ef21be8a071720e2959ded.png)在之前的文章中主要分享了 pytest 的实用特性,接下来讲 Pytest 参数化用例的构建。如果待测试的输入与输出是一组数据,可以把测试数据组织起来用不同的测试数据调用相同的测试方法。参数


在之前的文章中主要分享了 pytest 的实用特性,接下来讲 Pytest 参数化用例的构建。
如果待测试的输入与输出是一组数据,可以把测试数据组织起来用不同的测试数据调用相同的测试方法。参数化顾名思义就是把不同的参数,写到一个集合里,然后程序会自动取值运行用例,直到集合为空便结束。pytest 中可以使用 @pytest.mark.parametrize 来参数化。
parametrize( ) 方法源码:

  • 主要参数说明
  • argsnames :参数名,是个字符串,如中间用逗号分隔则表示为多个参数名
  • argsvalues :参数值,参数组成的列表,列表中有几个元素,就会生成几条用例
  • 使用方法
  • 使用 @pytest.mark.paramtrize() 装饰测试方法
  • parametrize('data', param) 中的 “data” 是自定义的参数名,param 是引入的参数列表
  • 将自定义的参数名 data 作为参数传给测试用例 test_func
  • 然后就可以在测试用例内部使用 data 的参数了

创建测试用例,传入三组参数,每组两个元素,判断每组参数里面表达式和值是否相等,代码如下:
运行结果:
整个执行过程中,pytest 将参数列表 [("3+5",8),("2+5",7),("7*5",30)] 中的三组数据取出来,每组数据生成一条测试用例,并且将每组数据中的两个元素分别赋值到方法中,作为测试方法的参数由测试用例使用。
同一个测试用例还可以同时添加多个 @pytest.mark.parametrize 装饰器, 多个 parametrize 的所有元素互相组合(类似笛卡儿乘积),生成大量测试用例。
场景:比如登录场景,用户名输入情况有 n 种,密码的输入情况有 m 种,希望验证用户名和密码,就会涉及到 n*m 种组合的测试用例,如果把这些数据一一的列出来,工作量也是非常大的。pytest 提供了一种参数化的方式,将多组测试数据自动组合,生成大量的测试用例。示例代码如下:
运行结果:
分析如上运行结果,测试方法 test_foo( ) 添加了两个 @pytest.mark.parametrize() 装饰器,两个装饰器分别提供两个参数值的列表,2 * 3 = 6 种结合,pytest 便会生成 6 条测试用例。在测试中通常使用这种方法是所有变量、所有取值的完全组合,可以实现全面的测试。
下面讲结合 @pytest.fixture 与 @pytest.mark.parametrize 实现参数化。
如果测试数据需要在 fixture 方法中使用,同时也需要在测试用例中使用,可以在使用 parametrize 的时候添加一个参数 indirect=True,pytest 可以实现将参数传入到 fixture 方法中,也可以在当前的测试用例中使用。
parametrize 源码:
indirect 参数设置为 True,pytest 会把 argnames 当作函数去执行,将 argvalues 作为参数传入到 argnames 这个函数里。创建“test_param.py”文件,代码如下:
运行结果:
上面的结果可以看出,当 indirect=True 时,会将 login_r 作为参数,test_user_data 被当作参数传入到 login_r 方法中,生成多条测试用例。通过 return 将结果返回,当调用 login_r 可以获取到 login_r 这个方法的返回数据。
【相关阅读】

  • Python 测试开发实战进阶,挑战阿里P6+,年薪50W+!
  • 干货 | 一文搞定 pytest 自动化测试框架(一)
  • 干货 | 一文搞定 pytest 自动化测试框架(二)
  • 干货 | 一文搞定 Linux 常用高频命令
目录
打赏
0
0
0
0
195
分享
相关文章
使用Python自动化生成物业通知单
本文介绍如何使用Python结合Pandas和python-docx库自动化生成物业通知单。通过读取Excel数据并填充至Word模板,实现高效准确的通知单批量制作。包括环境准备、代码解析及效果展示,适用于物业管理场景。
91 14
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
364 10
|
2月前
|
自动化微信朋友圈:Python脚本实现自动发布动态
本文介绍如何使用Python脚本自动化发布微信朋友圈动态,节省手动输入的时间。主要依赖`pyautogui`、`time`、`pyperclip`等库,通过模拟鼠标和键盘操作实现自动发布。代码涵盖打开微信、定位朋友圈、准备输入框、模拟打字等功能。虽然该方法能提高效率,但需注意可能违反微信使用条款,存在风险。定期更新脚本以适应微信界面变化也很重要。
233 61
Python自动化脚本:高效办公新助手###
本文将带你走进Python自动化脚本的奇妙世界,探索其在提升办公效率中的强大潜力。随着信息技术的飞速发展,重复性工作逐渐被自动化工具取代。Python作为一门简洁而强大的编程语言,凭借其丰富的库支持和易学易用的特点,成为编写自动化脚本的首选。无论是数据处理、文件管理还是网页爬虫,Python都能游刃有余地完成任务,极大地减轻了人工操作的负担。接下来,让我们一起领略Python自动化脚本的魅力,开启高效办公的新篇章。 ###
Python自动化Office文档处理全攻略
本文介绍如何使用Python自动化处理Word、Excel和PDF文档,提升办公效率。通过安装`python-docx`、`openpyxl`、`pandas`、`PyPDF2`和`pdfplumber`等库,可以轻松实现读取、修改、创建和批量处理这些文档。具体包括:自动化处理Word文档(如读取、修改内容、调整样式),Excel文档(如读取、清洗、汇总数据),以及PDF文档(如提取文本和表格数据)。结合代码示例和实战案例,帮助你掌握高效办公技巧,减少手动操作的错误率。
12 1
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
83 16
Python时间序列分析:使用TSFresh进行自动化特征提取
LangGraph:构建多代理动态工作流的开源框架,支持人工干预、循环、持久性等复杂工作流自动化
LangGraph 是一个基于图结构的开源框架,专为构建状态化、多代理系统设计,支持循环、持久性和人工干预,适用于复杂的工作流自动化。
144 12
LangGraph:构建多代理动态工作流的开源框架,支持人工干预、循环、持久性等复杂工作流自动化
pytest接口自动化测试框架搭建
通过上述步骤,我们成功搭建了一个基于 `pytest`的接口自动化测试框架。这个框架具备良好的扩展性和可维护性,能够高效地管理和执行API测试。通过封装HTTP请求逻辑、使用 `conftest.py`定义共享资源和前置条件,并利用 `pytest.ini`进行配置管理,可以大幅提高测试的自动化程度和执行效率。希望本文能为您的测试工作提供实用的指导和帮助。
119 15
用Python实现简单的任务自动化
本文介绍如何使用Python实现任务自动化,提高效率和准确性。通过三个实用案例展示:1. 使用`smtplib`和`schedule`库自动发送邮件提醒;2. 利用`shutil`和`os`库自动备份文件;3. 借助`requests`库自动下载网页内容。每个案例包含详细代码和解释,并附带注意事项。掌握这些技能有助于个人和企业优化流程、节约成本。
75 3
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
218 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统

热门文章

最新文章