UDP ,你要耗子喂汁呀!(二)

简介: 欢迎阅读「程序员cxuan」 的文章,从今往后,你就是我的读者了。你可以加个星标,及时阅读最新文章哦!

聊聊 IP

IPInternet Protocol(网际互连协议)的缩写,是 TCP/IP 体系中的网络层协议。设计 IP 的初衷主要想解决两类问题

  • 提高网络扩展性:实现大规模网络互联
  • 对应用层和链路层进行解藕,让二者独立发展。

IP 是整个 TCP/IP 协议族的核心,也是构成互联网的基础。为了实现大规模网络的互通互联,IP 更加注重适应性、简洁性和可操作性,并在可靠性做了一定的牺牲。IP 不保证分组的交付时限和可靠性,所传送分组有可能出现丢失、重复、延迟或乱序等问题。

我们知道,TCP 协议的下一层就是 IP 协议层,既然 IP 不可靠,那么如何保证数据能够准确无误地到达呢?

这就涉及到 TCP 传输机制的问题了,我们后面聊到 TCP 的时候再说。

端口号

在聊端口号前,先来聊一聊文件描述以及 socket 和端口号的关系

为了方便资源的使用,提高机器的性能、利用率和稳定性等等原因,我们的计算机都有一层软件叫做操作系统,它用于帮我们管理计算机可以使用的资源,当我们的程序要使用一个资源的时候,可以向操作系统申请,再由操作系统为我们的程序分配和管理资源。通常当我们要访问一个内核设备或文件时,程序可以调用系统函数,系统就会为我们打开设备或文件,然后返回一个文件描述符fd(或称为ID,是一个整数),我们要访问该设备或文件,只能通过该文件描述符。可以认为该编号对应着打开的文件或设备。

而当我们的程序要使用网络时,要使用到对应的操作系统内核的操作和网卡设备,所以我们可以向操作系统申请,然后系统会为我们创建一个套接字 Socket,并返回这个 Socket 的ID,以后我们的程序要使用网络资源,只要向这个 Socket 的编号 ID 操作即可。而我们的每一个网络通信的进程至少对应着一个 Socket。向 Socket 的 ID 中写数据,相当于向网络发送数据,向 Socket 中读数据,相当于接收数据。而且这些套接字都有唯一标识符——文件描述符 fd。

端口号是 16 位的非负整数,它的范围是 0 - 65535 之间,这个范围会分为三种不同的端口号段,由 Internet 号码分配机构 IANA 进行分配

  • 周知/标准端口号,它的范围是 0 - 1023
  • 注册端口号,范围是 1024 - 49151
  • 私有端口号,范围是 49152 - 6553

一台计算机上可以运行多个应用程序,当一个报文段到达主机后,应该传输给哪个应用程序呢?你怎么知道这个报文段就是传递给 HTTP 服务器而不是 SSH 服务器的呢?

是凭借端口号吗?当报文到达服务器时,是端口号来区分不同应用程序的,所以应该借助端口号来区分。

举个例子反驳一下 cxuan,假如到达服务器的两条数据都是由 80 端口发出的你该如何区分呢?或者说到达服务器的两条数据端口一样,协议不同,该如何区分呢?

所以仅凭端口号来确定某一条报文显然是不够的。

互联网上一般使用 源 IP 地址、目标 IP 地址、源端口号、目标端口号 来进行区分。如果其中的某一项不同,就被认为是不同的报文段。这些也是多路分解和多路复用 的基础。

确定端口号

在实际通信之前,需要先确定一下端口号,确定端口号的方法分为两种:

  • 标准既定的端口号

标准既定的端口号是静态分配的,每个程序都会有自己的端口号,每个端口号都有不同的用途。端口号是一个 16 比特的数,其大小在 0 - 65535 之间,0 - 1023 范围内的端口号都是动态分配的既定端口号,例如 HTTP 使用 80 端口来标识,FTP 使用 21 端口来标识,SSH 使用 22 来标识。这类端口号有一个特殊的名字,叫做 周知端口号(Well-Known Port Number)

  • 时序分配的端口号

第二种分配端口号的方式是一种动态分配法,在这种方法下,客户端应用程序可以完全不用自己设置端口号,凭借操作系统进行分配,操作系统可以为每个应用程序分配互不冲突的端口号。这种动态分配端口号的机制即使是同一个客户端发起的 TCP 连接,也能识别不同的连接。

多路复用和多路分解

我们上面聊到了在主机上的每个套接字都会分配一个端口号,当报文段到达主机时,运输层会检查报文段中的目的端口号,并将其定向到相应的套接字,然后报文段中的数据通过套接字进入其所连接的进程。下面我们来聊一下什么是多路复用和多路分解的概念。

多路复用和多路分解分为两种,即无连接的多路复用(多路分解)和面向连接的多路复用(多路分解)

无连接的多路复用和多路分解

开发人员会编写代码确定端口号是周知端口号还是时序分配的端口号。假如主机 A 中的一个 10637 端口要向主机 B 中的 45438 端口发送数据,运输层采用的是 UDP 协议,数据在应用层产生后,会在运输层中加工处理,然后在网络层将数据封装得到 IP 数据报,IP 数据包通过链路层尽力而为的交付给主机 B,然后主机 B 会检查报文段中的端口号判断是哪个套接字的,这一系列的过程如下所示

微信图片_20220416140953.png

UDP 套接字就是一个二元组,二元组包含目的 IP 地址和目的端口号。

所以,如果两个 UDP 报文段有不同的源 IP 地址和/或相同的源端口号,但是具有相同的目的 IP 地址和目的端口号,那么这两个报文会通过套接字定位到相同的目的进程。

这里思考一个问题,主机 A 给主机 B 发送一个消息,为什么还需要知道源端口号呢?比如我给妹子表达出我对你有点意思的信息,妹子还需要知道这个信息是从我的哪个器官发出的吗?知道是我这个人对你有点意思不就完了?实际上是需要的,因为妹子如果要表达出她对你也有点意思,她是不是可能会亲你一口,那她得知道往哪亲吧?

这就是,在 A 到 B 的报文段中,源端口号会作为 返回地址 的一部分,即当 B 需要回发一个报文段给 A 时,B 需要从 A 到 B 中的源端口号取值,如下图所示

微信图片_20220416140958.png

面向连接的多路复用与多路分解

如果说无连接的多路复用和多路分解指的是 UDP 的话,那么面向连接的多路复用与多路分解指的是 TCP 了,TCP 和 UDP 在报文结构上的差别是,UDP 是一个二元组而 TCP 是一个四元组,即源 IP 地址、目标 IP 地址、源端口号、目标端口号 ,这个我们上面也提到了。当一个 TCP 报文段从网络到达一台主机时,这个主机会根据这四个值拆解到对应的套接字上。

微信图片_20220416141002.png

上图显示了面向连接的多路复用和多路分解的过程,图中主机 C 向主机 B 发起了两个 HTTP 请求,主机 A 向主机 C 发起了一个 HTTP 请求,主机 A、B、C 都有自己唯一的 IP 地址,当主机 C 发出 HTTP 请求后,主机 B 能够分解这两个 HTTP 连接,因为主机 C 发出请求的两个源端口号不同,所以对于主机 B 来说,这是两条请求,主机 B 能够进行分解。对于主机 A 和主机 C 来说,这两个主机有不同的 IP 地址,所以对于主机 B 来说,也能够进行分解。

UDP

终于,我们开始了对 UDP 协议的探讨,淦起!

UDP 的全称是 用户数据报协议(UDP,User Datagram Protocol),UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据包的方法。如果应用程序开发人员选择的是 UDP 而不是 TCP 的话,那么该应用程序相当于就是和 IP 直接打交道的。

从应用程序传递过来的数据,会附加上多路复用/多路分解的源和目的端口号字段,以及其他字段,然后将形成的报文传递给网络层,网络层将运输层报文段封装到 IP 数据报中,然后尽力而为的交付给目标主机。最关键的一点就是,使用 UDP 协议在将数据报传递给目标主机时,发送方和接收方的运输层实体间是没有握手的。正因为如此,UDP 被称为是无连接的协议。

UDP 特点

UDP 协议一般作为流媒体应用、语音交流、视频会议所使用的传输层协议,我们大家都知道的 DNS 协议底层也使用了 UDP 协议,这些应用或协议之所以选择 UDP 主要是因为以下这几点

  • 速度快,采用 UDP 协议时,只要应用进程将数据传给 UDP,UDP 就会将此数据打包进 UDP 报文段并立刻传递给网络层,然后 TCP 有拥塞控制的功能,它会在发送前判断互联网的拥堵情况,如果互联网极度阻塞,那么就会抑制 TCP 的发送方。使用 UDP 的目的就是希望实时性。
  • 无须建立连接,TCP 在数据传输之前需要经过三次握手的操作,而 UDP 则无须任何准备即可进行数据传输。因此 UDP 没有建立连接的时延。如果使用 TCP 和 UDP 来比喻开发人员:TCP 就是那种凡事都要设计好,没设计不会进行开发的工程师,需要把一切因素考虑在内后再开干!所以非常靠谱;而 UDP 就是那种上来直接干干干,接到项目需求马上就开干,也不管设计,也不管技术选型,就是干,这种开发人员非常不靠谱,但是适合快速迭代开发,因为可以马上上手!
  • 无连接状态,TCP 需要在端系统中维护连接状态,连接状态包括接收和发送缓存、拥塞控制参数以及序号和确认号的参数,在 UDP 中没有这些参数,也没有发送缓存和接受缓存。因此,某些专门用于某种特定应用的服务器当应用程序运行在 UDP 上,一般能支持更多的活跃用户
  • 分组首部开销小,每个 TCP 报文段都有 20 字节的首部开销,而 UDP 仅仅只有 8 字节的开销。

这里需要注意一点,并不是所有使用 UDP 协议的应用层都是不可靠的,应用程序可以自己实现可靠的数据传输,通过增加确认和重传机制。所以使用 UDP 协议最大的特点就是速度快。

相关文章
|
3月前
|
网络协议 安全
TCP连接和断连夺命6连问
这篇文章详细解答了TCP协议中三次握手建立连接和四次挥手断开连接过程中的六个常见疑问,包括为什么需要三次而不是二次握手、初始化序列号为何每次都要不一样、为何断开连接需要四次而不是三次握手、TIME_WAIT状态的原因和作用,以及TIME_WAIT等待2MSL时间的原因。
61 1
|
3月前
|
网络协议 安全
揭秘TCP背后的秘密:为何三次握手是连接的灵魂,四次挥手是告别的艺术,让数据传输稳如老狗!
【8月更文挑战第4天】TCP为何需三次握手和四次挥手?三次握手确保连接建立时双方均准备好并确认序列号,过程包括:客户端发SYN包;服务器回应SYN+ACK;客户端再回ACK确认,确保可靠通信。四次挥手则确保连接终止时双方能安全、有序地结束数据传输,包括客户端发FIN包;服务器回应ACK并可能继续发送数据;完成后发FIN包;客户端最终确认,确保无数据丢失或状态不一致。
69 9
|
6月前
|
网络协议
【掰开揉碎】WebSocket与TCP/IP
【掰开揉碎】WebSocket与TCP/IP
|
消息中间件 网络协议 JavaScript
面试官:一台服务器最大能支持多少条 TCP 连接?问倒一大片。。。
面试官:一台服务器最大能支持多少条 TCP 连接?问倒一大片。。。
|
网络协议 网络性能优化
重新认识 TCP 三次握⼿ 和 四次挥⼿
重新认识 TCP 三次握⼿ 和 四次挥⼿
63 0
|
网络协议 算法 安全
长篇tcp 网络,汇集大小厂经典问题
还在等什么,快来一起讨论关注吧,公众号【八点半技术站】,欢迎加入社群
长篇tcp 网络,汇集大小厂经典问题
|
网络协议 安全 Linux
《我要进大厂》- 计算机网络夺命连环23问,你能坚持到第几问?(TCP 三次握手、四次挥手
《我要进大厂》- 计算机网络夺命连环23问,你能坚持到第几问?(TCP 三次握手、四次挥手
《我要进大厂》- 计算机网络夺命连环23问,你能坚持到第几问?(TCP 三次握手、四次挥手
|
缓存 网络协议 Java
TCP学习笔记(二) 相识篇
TCP学习笔记(二) 相识篇
TCP学习笔记(二) 相识篇
|
网络协议
TCP:一个悲伤的故事
TCP:一个悲伤的故事
|
程序员
UDP ,你要耗子喂汁呀!(三)
欢迎阅读「程序员cxuan」 的文章,从今往后,你就是我的读者了。你可以加个星标,及时阅读最新文章哦!
UDP ,你要耗子喂汁呀!(三)