【C语言】四行代码说明浮点型在内存中的储存

简介: 【C语言】四行代码说明浮点型在内存中的储存

 

【C语言】浮点数在内存中的储存

  浮点数和整型数存入内存中的方式不同,它有一个专门的标准:

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

                 (-1)^S * M * 2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。

M表示有效数字,大于等于1,小于2。

2^E表示指数位

在存入内存中的时候,其实只是把浮点数的SEM值存入,需要用的时候,把SEM取出来,根据标准就可以转化成存入的浮点数了


举例来说:

微信图片_20220415153309.png

求出了对应的SEM值后,就要把这三个值存入地址中:


IEEE 754规定:


对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M


对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

微信图片_20220415153352.png微信图片_20220415153408.png


IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的科学计数法的形式,其中xxxxxx表示小数部分。


M:

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。

比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。

以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。


至于指数E,情况就比较复杂:

首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~ 255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

比如,2^10的E 是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。


能存当然能用

从内存中取出的话

S正常取出

M因为存的时候只存了小数点后的小数部分,所以取出后应该是1.M


E就得分三种情况


①E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位

00000000000000000000000,则其二进制表示形式为: 0 01111110 00000000000000000000000

②E全为0这是一种特殊情况

这时,浮点数的指数E不用再算了,直接等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

③E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

好了,关于浮点数的表示规则,就说到这里


接下来用几行代码来实际说明一下浮点型在内存中的存储与使用

微信图片_20220415153633.png

这几行代码的意思是

分别按整型和浮点型存入内存的方式存入9和9.0

再分别按整型数和浮点数将其输出

1  int n = 9;

2  printf("*pFloat的值为:%f\n", *pFloat);//0.000000


这两行代码意思是按浮点数的方式输出9

而9一开始存在内存中的二进制补码为

00000000000000000000000000001001

对于这个二进制序列,要以浮点数输出,系统就会用国际标准IEEE 754来对其进行判断


微信图片_20220415153808.png

接下来是在内存中存入一个浮点数,按整型输出


1  *pFloat = 9.0;

2  printf("num的值为:%d\n", n);//1091567616

先把9.0根据IEEE 754标准存入内存,即

(-1)^0 × 1.001×2^3

S=0

E=3

M=1.001

内存中:0 10000010 00100000000000000000000

这时,%d按整型打印,系统就会按整型对这个序列进行判断

存在内存中的01000001000100000000000000000000就是整型数的补码,由于是正数,补码等于原码,所以二进制序列对应的数为1091567616,即为输出结果

————————————————

版权声明:本文为CSDN博主「敲代码的布莱恩特」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/DerrickWestbrook/article/details/119548740

相关文章
|
1月前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
58 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
11天前
|
安全 测试技术 数据库
代码危机:“内存溢出” 事件的深度剖析与反思
初涉编程时,我坚信严谨逻辑能让代码顺畅运行。然而,“内存溢出”这一恶魔却以残酷的方式给我上了一课。在开发电商平台订单系统时,随着订单量增加,系统逐渐出现处理迟缓甚至卡死的情况,最终排查发现是订单状态更新逻辑中的细微错误导致内存无法及时释放,进而引发内存溢出。这次经历让我深刻认识到微小错误可能带来巨大灾难,从此对待代码更加谨慎,并养成了定期审查和测试的习惯。
29 0
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
72 5
|
2月前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
72 6
|
2月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
215 13
|
2月前
|
存储 C语言 开发者
C 语言指针与内存管理
C语言中的指针与内存管理是编程的核心概念。指针用于存储变量的内存地址,实现数据的间接访问和操作;内存管理涉及动态分配(如malloc、free函数)和释放内存,确保程序高效运行并避免内存泄漏。掌握这两者对于编写高质量的C语言程序至关重要。
76 11
|
2月前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
80 1
|
2月前
|
存储 C语言 计算机视觉
在C语言中指针数组和数组指针在动态内存分配中的应用
在C语言中,指针数组和数组指针均可用于动态内存分配。指针数组是数组的每个元素都是指针,可用于指向多个动态分配的内存块;数组指针则指向一个数组,可动态分配和管理大型数据结构。两者结合使用,灵活高效地管理内存。
|
2月前
|
存储 JavaScript 前端开发
如何优化代码以避免闭包引起的内存泄露
本文介绍了闭包引起内存泄露的原因,并提供了几种优化代码的策略,帮助开发者有效避免内存泄露问题,提升应用性能。