python数据分析基础010 -利用pandas带你玩转excel表格(终篇)

简介: python数据分析基础010 -利用pandas带你玩转excel表格(终篇)

文章要点

image.pngimage.png

🍺前言image.png🔅(一)读取其他文件image.png

💨1.excel读取其他文件image.png

💦1.1 导入csv文件image.png💦1.2 导入tsv文件image.png💦1.3 导入txt文本文件image.png

💨2.pandas读取其他文件image.png

💦2.1 读取csv文件

import pandas as pd
# 导入csv文件
test1 = pd.read_csv('./excel/test12.csv',index_col="ID")
df1 = pd.DataFrame(test1)
print(df1)

💦2.2 读取tsv文件image.png

import pandas as pd
# 导入tsv文件
test3 = pd.read_csv("./excel/test11.tsv",sep='\t')
df3 = pd.DataFrame(test3)
print(df3)

💦2.3 读取txt文件

import pandas as pd
# 导入txt文件
test2 = pd.read_csv("./excel/test13.txt",sep='|')
df2 = pd.DataFrame(test2)
print(df2)

结果:

🔅(二)数据透视表

在excel中存在多种数据,且分为很多类型,这时使用数据透视表就会很方便也很直观的为我们分析出各种我们想要的数据了。

实例:将下列数据绘制成一个透视表,并绘制出按总类分每年的销售额!

💨1.在excel中制作透视表

需要按照年份来分,则我们需要将date列拆分,把年份拆分出来。随后在数据栏下选择数据透视表,选择区域即可。

随后将各部分数据拖动到各区域即可。

结果:

这样就在excel中完成了数据透视表的制作。

那么在pandas中要怎么实现这一效果呢?

💨2.在pandas中绘制透视表image.png

import pandas as pd
import numpy as np
pd.options.display.max_columns =999
test = pd.read_excel('./excel/test14.xlsx')
df = pd.DataFrame(test)
# 将年份取出并新建一个列名为年份的列
df['year'] = pd.DatetimeIndex(df['Date']).year
# 绘制透视表
table = df.pivot_table(index='总类',columns='year',values='销售额',aggfunc=np.sum)
df1 = pd.DataFrame(table)
df1['总计'] = df1[[2011,2012,2013,2014]].sum(axis=1)
print(df1)

结果:

image.png

import pandas as pd
import numpy as np
pd.options.display.max_columns =999
test = pd.read_excel('./excel/test14.xlsx')
df = pd.DataFrame(test)
# 将年份取出并新建一个列名为年份的列
df['year'] = pd.DatetimeIndex(df['Date']).year
# groupby方法
group = df.groupby(['总类','year'])
s= group['销售额'].sum()
c = group['ID'].count()
table = pd.DataFrame({'sum':s,'total':c})
print(table)

结果:

🍻结语今天的内容就到这里啦,希望看到此文的小伙伴能有所收获,觉得不错的话还望三连支持一波啊,关注我,咱们下期再见!!

相关文章
|
25天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
28天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
83 4
数据分析的 10 个最佳 Python 库
|
22天前
|
数据可视化 数据处理 Python
使用Pandas实现Excel中的数据透视表功能
本文介绍了如何使用Python的Pandas库实现Excel中的数据透视表功能,包括环境准备、创建模拟销售数据、代码实现及输出等步骤。通过具体示例展示了按地区和销售员汇总销售额的不同方法,如求和、平均值、最大值等,帮助读者掌握Pandas在数据处理上的强大能力。
53 12
|
1月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
1月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
1月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
Java Python
Python基础 | 深浅拷贝问题、递归函数练习
在实际工作中,经常涉及到数据的传递,在数据传递使用过程中,可能会发生数据被修改的问题。为了防止数据被修改,就需要在传递一个副本,即使副本被修改,也不会影响原数据的使用。为了生成这个副本,就产生了拷贝。下面先了解一下几个概念:对象、可变类型、引用
267 0
Python基础 | 深浅拷贝问题、递归函数练习
|
Python
python——基础练习(五)
python——基础练习(五)
137 0
python——基础练习(五)