阿里云发布中国云原生数据湖应用洞察白皮书

简介: 近日,阿里云发布《中国云原生数据湖应用洞察白皮书》。云原生数据湖主要应用于泛互联网行业(40.7%)及传统行业的互联网场景(泛政务、金融、工业、医疗、汽车等),未来将向更多具有大数据和高价值属性的行业拓展。

在数字经济的背景下,互联网行业及传统企业加速云化转型,中国整体云服务市场的规模逐年扩增,云成为新一代IT基础设施已经成为不争的事实。其中,企业云化转型的深入以及用云思维的转变,驱动了PaaS市场份额的增长,基于云的能力创新已成为基础云发展新的增长引擎。云特有的“池化、弹性、成本、敏捷”等优势让数据层与应用层的很多设想得以实现,拥抱云原生成为数据湖乃至大数据的必然选择。


白皮书核心摘要:

概念界定:数据湖是面向大数据场景的创新解决方案,云原生是数据湖未来部署的必然形态,具有「建立统一数据资产、低成本使用基础资源、高性能计算体验升级和敏捷创新赋能」的核心价值。

市场现状:2020年云原生数据湖市场规模(含生态)达124亿,预计未来三年将以39.7%的复合增长率快速扩张。

竞争格局:中国云原生数据湖还处于发展的早期,能够提供整体解决方案的独立厂商还较少,市场较为集中,竞争主要围绕头部云厂商展开。

应用现状:现阶段,云原生数据湖主要应用于泛互联网行业(40.7%)及传统行业的互联网场景(泛政务、金融、工业、医疗、汽车等),未来将向更多具有大数据和高价值属性的行业拓展。

选型建议:企业在布局数字化转型时,面对多元且快速迭代的业务需求,一方面需建设统一的数据底座,另一方面需关注DT能力的开放性、敏捷性和创新性。在选型云原生数据湖时,除内部能力评估外,还需要考虑服务商的服务半径和发展路径。

趋势展望:在云原生与大数据背景下,云原生数据湖成为企业智胜未来的新一代生产力工具,市场即将迎来爆发期。未来,云原生数据湖厂商需与开发者、ISV和SI共同努力,在企业级生产环境中不断探索,生态共赢驱动云原生数据湖解决方案日臻完善。

1649994513924-7b71e1dc-329e-4153-ae8a-3a2dacf11390.png

目录
相关文章
|
4月前
|
存储 运维 分布式计算
零售数据湖的进化之路:滔搏从Lambda架构到阿里云Flink+Paimon统一架构的实战实践
在数字化浪潮席卷全球的今天,传统零售企业面临着前所未有的技术挑战和转型压力。本文整理自 Flink Forward Asia 2025 城市巡回上海站,滔搏技术负责人分享了滔搏从传统 Lambda 架构向阿里云实时计算 Flink 版+Paimon 统一架构转型的完整实战历程。这不仅是一次技术架构的重大升级,更是中国零售企业拥抱实时数据湖仓一体化的典型案例。
278 0
|
8月前
|
Kubernetes Cloud Native 安全
云原生机密计算新范式 PeerPods技术方案在阿里云上的落地和实践
PeerPods 技术价值已在阿里云实际场景中深度落地。
|
6月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。
|
6月前
|
消息中间件 人工智能 监控
【云故事探索 | NO.15】:阿里云云原生加速鸣鸣很忙数字化
【云故事探索 | NO.15】:阿里云云原生加速鸣鸣很忙数字化
|
7月前
|
消息中间件 人工智能 监控
【云故事探索】NO.15:阿里云云原生加速鸣鸣很忙数字化
鸣鸣很忙集团作为中国最大休闲食品饮料连锁零售商,通过数字化与云原生技术实现快速扩张,4年完成其他企业10年的数字化进程。其采用阿里云全栈云原生方案,实现弹性扩容、智能补货、模块化开店等创新实践,支撑日均超430万交易数据稳定运行。未来将深化AI应用,推动供应链智能化与业务全面升级。
|
8月前
|
Cloud Native 关系型数据库 分布式数据库
客户说|知乎基于阿里云PolarDB,实现最大数据库集群云原生升级
近日,知乎最大的风控业务数据库集群,基于阿里云瑶池数据库完成了云原生技术架构的升级。此次升级不仅显著提升了系统的高可用性和性能上限,还大幅降低了底层资源成本。
|
SQL 分布式计算 数据处理
Uber基于Apache Hudi增量 ETL 构建大规模数据湖
Uber基于Apache Hudi增量 ETL 构建大规模数据湖
470 2
|
存储 SQL 分布式计算
基于Apache Hudi + MinIO 构建流式数据湖
基于Apache Hudi + MinIO 构建流式数据湖
688 1
|
12月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
存储 SQL 大数据
从数据存储到分析:构建高效开源数据湖仓解决方案
今年开源大数据迈向湖仓一体(Lake House)时代,重点介绍Open Lake解决方案。该方案基于云原生架构,兼容开源生态,提供开箱即用的数据湖仓产品。其核心优势在于统一数据管理和存储,支持实时与批处理分析,打破多计算产品的数据壁垒。通过阿里云的Data Lake Formation和Apache Paimon等技术,用户可高效搭建、管理并分析大规模数据,实现BI和AI融合,满足多样化数据分析需求。