引起线程切换的几种方式
线程间的切换一般是操作系统层面需要考虑的问题,那么引起线程上下文切换有哪几种方式呢?或者说线程切换有哪几种诱因呢?主要有下面几种引起上下文切换的方式
- 当前正在执行的任务完成,系统的 CPU 正常调度下一个需要运行的线程
- 当前正在执行的任务遇到 I/O 等阻塞操作,线程调度器挂起此任务,继续调度下一个任务。
- 多个任务并发抢占锁资源,当前任务没有获得锁资源,被线程调度器挂起,继续调度下一个任务。
- 用户的代码挂起当前任务,比如线程执行 sleep 方法,让出CPU。
- 使用硬件中断的方式引起上下文切换
线程安全性
在 Java 中,要实现线程安全性,必须要正确的使用线程和锁,但是这些只是满足线程安全的一种方式,要编写正确无误的线程安全的代码,其核心就是对状态访问操作进行管理。最重要的就是最 共享(Shared)
的 和 可变(Mutable)
的状态。只有共享和可变的变量才会出现问题,私有变量不会出现问题,参考程序计数器
。
对象的状态可以理解为存储在实例变量或者静态变量中的数据,共享意味着某个变量可以被多个线程同时访问、可变意味着变量在生命周期内会发生变化。一个变量是否是线程安全的,取决于它是否被多个线程访问。要使变量能够被安全访问,必须通过同步机制来对变量进行修饰。
如果不采用同步机制的话,那么就要避免多线程对共享变量的访问,主要有下面两种方式
- 不要在多线程之间共享变量
- 将共享变量置为不可变的
我们说了这么多次线程安全性,那么什么是线程安全性呢?
什么是线程安全性
多个线程可以同时安全调用的代码称为线程安全的,如果一段代码是安全的,那么这段代码就不存在 竞态条件
。仅仅当多个线程共享资源时,才会出现竞态条件。
根据上面的探讨,我们可以得出一个简单的结论:「当多个线程访问某个类时,这个类始终都能表现出正确的行为,那么就称这个类是线程安全的」。
单线程就是一个线程数量为 1 的多线程,单线程一定是线程安全的。读取某个变量的值不会产生安全性问题,因为不管读取多少次,这个变量的值都不会被修改。
原子性
我们上面提到了原子性的概念,你可以把原子性
操作想象成为一个不可分割
的整体,它的结果只有两种,要么全部执行,要么全部回滚。你可以把原子性认为是 婚姻关系
的一种,男人和女人只会产生两种结果,好好的
和 说散就散
,一般男人的一生都可以把他看成是原子性的一种,当然我们不排除时间管理(线程切换)
的个例,我们知道线程切换必然会伴随着安全性问题,男人要出去浪也会造成两种结果,这两种结果分别对应安全性的两个结果:线程安全(好好的)和线程不安全(说散就散)。
竞态条件
有了上面的线程切换的功底,那么竞态条件也就好定义了,它指的就是「两个或多个线程同时对一共享数据进行修改,从而影响程序运行的正确性时,这种就被称为竞态条件(race condition)」 ,线程切换是导致竞态条件出现的诱导因素,我们通过一个示例来说明,来看一段代码
public class RaceCondition { private Signleton single = null; public Signleton newSingleton(){ if(single == null){ single = new Signleton(); } return single; } }
在上面的代码中,涉及到一个竞态条件,那就是判断 single
的时候,如果 single 判断为空,此时发生了线程切换,另外一个线程执行,判断 single 的时候,也是空,执行 new 操作,然后线程切换回之前的线程,再执行 new 操作,那么内存中就会有两个 Singleton 对象。
加锁机制
在 Java 中,有很多种方式来对共享和可变的资源进行加锁和保护。Java 提供一种内置的机制对资源进行保护:synchronized
关键字,它有三种保护机制
- 对方法进行加锁,确保多个线程中只有一个线程执行方法;
- 对某个对象实例(在我们上面的探讨中,变量可以使用对象来替换)进行加锁,确保多个线程中只有一个线程对对象实例进行访问;
- 对类对象进行加锁,确保多个线程只有一个线程能够访问类中的资源。
synchronized 关键字对资源进行保护的代码块俗称 同步代码块(Synchronized Block)
,例如
synchronized(lock){ // 线程安全的代码 }
每个 Java 对象都可以用做一个实现同步的锁,这些锁被称为 内置锁(Instrinsic Lock)
或者 监视器锁(Monitor Lock)
。线程在进入同步代码之前会自动获得锁,并且在退出同步代码时自动释放锁,而无论是通过正常执行路径退出还是通过异常路径退出,获得内置锁的唯一途径就是进入这个由锁保护的同步代码块或方法。
synchronized 的另一种隐含的语义就是 互斥
,互斥意味着独占
,最多只有一个线程持有锁,当线程 A 尝试获得一个由线程 B 持有的锁时,线程 A 必须等待或者阻塞,直到线程 B 释放这个锁,如果线程 B 不释放锁的话,那么线程 A 将会一直等待下去。
线程 A 获得线程 B 持有的锁时,线程 A 必须等待或者阻塞,但是获取锁的线程 B 可以重入,重入的意思可以用一段代码表示
public class Retreent { public synchronized void doSomething(){ doSomethingElse(); System.out.println("doSomething......"); } public synchronized void doSomethingElse(){ System.out.println("doSomethingElse......"); }
获取 doSomething() 方法锁的线程可以执行 doSomethingElse() 方法,执行完毕后可以重新执行 doSomething() 方法中的内容。锁重入也支持子类和父类之间的重入,具体的我们后面会进行介绍。
volatile
是一种轻量级的 synchronized
,也就是一种轻量级的加锁方式,volatile 通过保证共享变量的可见性来从侧面对对象进行加锁。可见性的意思就是当一个线程修改一个共享变量时,另外一个线程能够 看见
这个修改的值。volatile 的执行成本要比 synchronized
低很多,因为 volatile 不会引起线程的上下文切换。
我们还可以使用原子类
来保证线程安全,原子类其实就是 rt.jar
下面以 atomic
开头的类
除此之外,我们还可以使用 java.util.concurrent
工具包下的线程安全的集合类来确保线程安全,具体的实现类和其原理我们后面会说。
可以使用不同的并发模型来实现并发系统,并发模型说的是系统中的线程如何协作完成并发任务。不同的并发模型以不同的方式拆分任务,线程可以以不同的方式进行通信和协作。
竞态条件和关键区域
竞态条件是在关键代码区域发生的一种特殊条件。关键区域是由多个线程同时执行的代码部分,关键区域中的代码执行顺序会对造成不一样的结果。如果多个线程执行一段关键代码,而这段关键代码会因为执行顺序不同而造成不同的结果时,那么这段代码就会包含竞争条件。
并发模型和分布式系统很相似
并发模型其实和分布式系统模型非常相似,在并发模型中是线程
彼此进行通信,而在分布式系统模型中是 进程
彼此进行通信。然而本质上,进程和线程也非常相似。这也就是为什么并发模型和分布式模型非常相似的原因。
分布式系统通常要比并发系统面临更多的挑战和问题比如进程通信、网络可能出现异常,或者远程机器挂掉等等。但是一个并发模型同样面临着比如 CPU 故障、网卡出现问题、硬盘出现问题等。
因为并发模型和分布式模型很相似,因此他们可以相互借鉴,例如用于线程分配的模型就类似于分布式系统环境中的负载均衡模型。
其实说白了,分布式模型的思想就是借鉴并发模型的基础上推演发展来的。
认识两个状态
并发模型的一个重要的方面是,线程是否应该共享状态
,是具有共享状态
还是独立状态
。共享状态也就意味着在不同线程之间共享某些状态
状态其实就是数据
,比如一个或者多个对象。当线程要共享数据时,就会造成 竞态条件
或者 死锁
等问题。当然,这些问题只是可能会出现,具体实现方式取决于你是否安全的使用和访问共享对象。
独立的状态表明状态不会在多个线程之间共享,如果线程之间需要通信的话,他们可以访问不可变的对象来实现,这是最有效的避免并发问题的一种方式,如下图所示
使用独立状态让我们的设计更加简单,因为只有一个线程能够访问对象,即使交换对象,也是不可变的对象。
并发模型
并行 Worker
第一个并发模型是并行 worker 模型,客户端会把任务交给 代理人(Delegator)
,然后由代理人把工作分配给不同的 工人(worker)
。如下图所示
并行 worker 的核心思想是,它主要有两个进程即代理人和工人,Delegator 负责接收来自客户端的任务并把任务下发,交给具体的 Worker 进行处理,Worker 处理完成后把结果返回给 Delegator,在 Delegator 接收到 Worker 处理的结果后对其进行汇总,然后交给客户端。
并行 Worker 模型是 Java 并发模型中非常常见的一种模型。许多 java.util.concurrent
包下的并发工具都使用了这种模型。
并行 Worker 的优点
并行 Worker 模型的一个非常明显的特点就是很容易理解,为了提高系统的并行度你可以增加多个 Worker 完成任务。
并行 Worker 模型的另外一个好处就是,它会将一个任务拆分成多个小任务,并发执行,Delegator 在接受到 Worker 的处理结果后就会返回给 Client,整个 Worker -> Delegator -> Client 的过程是异步
的。
并行 Worker 的缺点
同样的,并行 Worker 模式同样会有一些隐藏的缺点
「共享状态会变得很复杂」
实际的并行 Worker 要比我们图中画出的更复杂,主要是并行 Worker 通常会访问内存或共享数据库中的某些共享数据。
这些共享状态可能会使用一些工作队列来保存业务数据、数据缓存、数据库的连接池等。在线程通信中,线程需要确保共享状态是否能够让其他线程共享,而不是仅仅停留在 CPU 缓存中让自己可用,当然这些都是程序员在设计时就需要考虑的问题。线程需要避免 竞态条件
,死锁
和许多其他共享状态造成的并发问题。
多线程在访问共享数据时,会丢失并发性,因为操作系统要保证只有一个线程能够访问数据,这会导致共享数据的争用和抢占。未抢占到资源的线程会 阻塞
。
现代的非阻塞并发算法可以减少争用提高性能,但是非阻塞算法比较难以实现。
可持久化的数据结构(Persistent data structures)
是另外一个选择。可持久化的数据结构在修改后始终会保留先前版本。因此,如果多个线程同时修改一个可持久化的数据结构,并且一个线程对其进行了修改,则修改的线程会获得对新数据结构的引用。
虽然可持久化的数据结构是一个新的解决方法,但是这种方法实行起来却有一些问题,比如,一个持久列表会将新元素添加到列表的开头,并返回所添加的新元素的引用,但是其他线程仍然只持有列表中先前的第一个元素的引用,他们看不到新添加的元素。
持久化的数据结构比如 链表(LinkedList)
在硬件性能上表现不佳。列表中的每个元素都是一个对象,这些对象散布在计算机内存中。现代 CPU 的顺序访问往往要快的多,因此使用数组等顺序访问的数据结构则能够获得更高的性能。CPU 高速缓存可以将一个大的矩阵块加载到高速缓存中,并让 CPU 在加载后直接访问 CPU 高速缓存中的数据。对于链表,将元素分散在整个 RAM 上,这实际上是不可能的。
「无状态的 worker」
共享状态可以由其他线程所修改,因此,worker 必须在每次操作共享状态时重新读取,以确保在副本上能够正确工作。不在线程内部保持状态的 worker 成为无状态的 worker。
「作业顺序是不确定的」
并行工作模型的另一个缺点是作业的顺序不确定,无法保证首先执行或最后执行哪些作业。任务 A 在任务 B 之前分配给 worker,但是任务 B 可能在任务 A 之前执行。
流水线
第二种并发模型就是我们经常在生产车间遇到的 流水线并发模型
,下面是流水线设计模型的流程图
这种组织架构就像是工厂中装配线中的 worker,每个 worker 只完成全部工作的一部分,完成一部分后,worker 会将工作转发给下一个 worker。
每道程序都在自己的线程中运行,彼此之间不会共享状态,这种模型也被称为无共享并发模型。
使用流水线并发模型通常被设计为非阻塞I/O
,也就是说,当没有给 worker 分配任务时,worker 会做其他工作。非阻塞I/O 意味着当 worker 开始 I/O 操作,例如从网络中读取文件,worker 不会等待 I/O 调用完成。因为 I/O 操作很慢,所以等待 I/O 非常耗费时间。在等待 I/O 的同时,CPU 可以做其他事情,I/O 操作完成后的结果将传递给下一个 worker。下面是非阻塞 I/O 的流程图
在实际情况中,任务通常不会按着一条装配线流动,由于大多数程序需要做很多事情,因此需要根据完成的不同工作在不同的 worker 之间流动,如下图所示
任务还可能需要多个 worker 共同参与完成
响应式 - 事件驱动系统
使用流水线模型的系统有时也被称为 响应式
或者 事件驱动系统
,这种模型会根据外部的事件作出响应,事件可能是某个 HTTP 请求或者某个文件完成加载到内存中。
Actor 模型
在 Actor 模型中,每一个 Actor 其实就是一个 Worker, 每一个 Actor 都能够处理任务。
简单来说,Actor 模型是一个并发模型,它定义了一系列系统组件应该如何动作和交互的通用规则,最著名的使用这套规则的编程语言是 Erlang。一个参与者Actor
对接收到的消息做出响应,然后可以创建出更多的 Actor 或发送更多的消息,同时准备接收下一条消息。
Channels 模型
在 Channel 模型中,worker 通常不会直接通信,与此相对的,他们通常将事件发送到不同的 通道(Channel)
上,然后其他 worker 可以在这些通道上获取消息,下面是 Channel 的模型图
有的时候 worker 不需要明确知道接下来的 worker 是谁,他们只需要将作者写入通道中,监听 Channel 的 worker 可以订阅或者取消订阅,这种方式降低了 worker 和 worker 之间的耦合性。
流水线设计的优点
与并行设计模型相比,流水线模型具有一些优势,具体优势如下
「不会存在共享状态」
因为流水线设计能够保证 worker 在处理完成后再传递给下一个 worker,所以 worker 与 worker 之间不需要共享任何状态,也就无需考虑并发问题。你甚至可以在实现上把每个 worker 看成是单线程的一种。
「有状态 worker」
因为 worker 知道没有其他线程修改自身的数据,所以流水线设计中的 worker 是有状态的,有状态的意思是他们可以将需要操作的数据保留在内存中,有状态通常比无状态更快。
「更好的硬件整合」
因为你可以把流水线看成是单线程的,而单线程的工作优势在于它能够和硬件的工作方式相同。因为有状态的 worker 通常在 CPU 中缓存数据,这样可以更快地访问缓存的数据。
「使任务更加有效的进行」
可以对流水线并发模型中的任务进行排序,一般用来日志的写入和恢复。
流水线设计的缺点
流水线并发模型的缺点是任务会涉及多个 worker,因此可能会分散在项目代码的多个类中。因此很难确定每个 worker 都在执行哪个任务。流水线的代码编写也比较困难,设计许多嵌套回调处理程序的代码通常被称为 回调地狱
。回调地狱很难追踪 debug。