深入剖析Kubernetes:容器编排与 Kubernetes 核心特性剖析

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 深入剖析Kubernetes:容器编排与 Kubernetes 核心特性剖析

容器本质

一个“容器”,实际上是一个由 Linux Namespace、Linux Cgroups 和 rootfs 三种技术构建出来的进程的隔离环境。

从这个结构中我们不难看出,一个正在运行的 Linux 容器,其实可以被“一分为二”地看待:

  1. 一组联合挂载在 /var/lib/docker/aufs/mnt 上的 rootfs,这一部分我们称为“容器镜像”(Container Image),是容器的静态视图;
  2. 一个由 Namespace+Cgroups 构成的隔离环境,这一部分我们称为“容器运行时”(Container Runtime),是容器的动态视图。

更进一步地说,作为一名开发者,我并不关心容器运行时的差异。因为,在整个“开发 - 测试 - 发布”的流程中,真正承载着容器信息进行传递的,是容器镜像,而不是容器运行时。


Kubernetes 项目要解决的问题是什么?

编排?调度?容器云?还是集群管理?

实际上,这个问题到目前为止都没有固定的答案。因为在不同的发展阶段,Kubernetes 需要着重解决的问题是不同的。

但是,对于大多数用户来说,他们希望 Kubernetes 项目带来的体验是确定的:现在我有了应用的容器镜像,请帮我在一个给定的集群上把这个应用运行起来。

更进一步地说,我还希望 Kubernetes 能给我提供路由网关、水平扩展、监控、备份、灾难恢复等一系列运维能力。

Kubernetes 项目的架构

 

我们可以看到,Kubernetes 项目的架构,跟它的原型项目 Borg 非常类似,都由 Master 和 Node 两种节点组成,而这两种角色分别对应着控制节点和计算节点。

其中,控制节点,即 Master 节点,由三个紧密协作的独立组件组合而成,它们分别是

负责 API 服务的 kube-apiserver、

负责调度的 kube-scheduler,

以及负责容器编排的 kube-controller-manager。

整个集群的持久化数据,则由 kube-apiserver 处理后保存在 Ectd 中。

而计算节点上最核心的部分,则是一个叫作 kubelet 的组件。

在 Kubernetes 项目中,kubelet 主要负责同容器运行时(比如 Docker 项目)打交道。而这个交互所依赖的,是一个称作 CRI(Container Runtime Interface)的远程调用接口,这个接口定义了容器运行时的各项核心操作,比如:启动一个容器需要的所有参数。

这也是为何,Kubernetes 项目并不关心你部署的是什么容器运行时、使用的什么技术实现,只要你的这个容器运行时能够运行标准的容器镜像,它就可以通过实现 CRI 接入到 Kubernetes 项目当中。

而具体的容器运行时,比如 Docker 项目,则一般通过 OCI 这个容器运行时规范同底层的 Linux 操作系统进行交互,即:把 CRI 请求翻译成对 Linux 操作系统的调用(操作 Linux Namespace 和 Cgroups 等)。

此外,kubelet 还通过 gRPC 协议同一个叫作 Device Plugin 的插件进行交互。这个插件,是 Kubernetes 项目用来管理 GPU 等宿主机物理设备的主要组件,也是基于 Kubernetes 项目进行机器学习训练、高性能作业支持等工作必须关注的功能。

kubelet 的另一个重要功能,则是调用网络插件和存储插件为容器配置网络和持久化存储。这两个插件与 kubelet 进行交互的接口,分别是 CNI(Container Networking Interface)和 CSI(Container Storage Interface)。

可以说,kubelet 完全就是为了实现 Kubernetes 项目对容器的管理能力而重新实现的一个组件


Borg 对于 Kubernetes 项目的指导作用又体现在哪里呢?

答案是,Master 节点。

虽然在 Master 节点的实现细节上 Borg 项目与 Kubernetes 项目不尽相同,但它们的出发点却高度一致,即:如何编排、管理、调度用户提交的作业?

所以,Borg 项目完全可以把 Docker 镜像看做是一种新的应用打包方式。这样,Borg 团队过去在大规模作业管理与编排上的经验就可以直接“套”在 Kubernetes 项目上了。

这些经验最主要的表现就是,从一开始,Kubernetes 项目就没有像同时期的各种“容器云”项目那样,把 Docker 作为整个架构的核心,而仅仅把它作为最底层的一个容器运行时实现。

而 Kubernetes 项目要着重解决的问题,则来自于 Borg 的研究人员在论文中提到的一个非常重要的观点:

运行在大规模集群中的各种任务之间,实际上存在着各种各样的关系。这些关系的处理,才是作业编排和管理系统最困难的地方。

事实也正是如此。

其实,这种任务与任务之间的关系,在我们平常的各种技术场景中随处可见。比如,一个 Web 应用与数据库之间的访问关系,一个负载均衡器和它的后端服务之间的代理关系,一个门户应用与授权组件之间的调用关系。

更进一步地说,同属于一个服务单位的不同功能之间,也完全可能存在这样的关系。比如,一个 Web 应用与日志搜集组件之间的文件交换关系。

而在容器技术普及之前,传统虚拟机环境对这种关系的处理方法都是比较“粗粒度”的。你会经常发现很多功能并不相关的应用被一股脑儿地部署在同一台虚拟机中,只是因为它们之间偶尔会互相发起几个 HTTP 请求。

更常见的情况则是,一个应用被部署在虚拟机里之后,你还得手动维护很多跟它协作的守护进程(Daemon),用来处理它的日志搜集、灾难恢复、数据备份等辅助工作。

但容器技术出现以后,你就不难发现,在“功能单位”的划分上,容器有着独一无二的“细粒度”优势:毕竟容器的本质,只是一个进程而已。

也就是说,只要你愿意,那些原先拥挤在同一个虚拟机里的各个应用、组件、守护进程,都可以被分别做成镜像,然后运行在一个个专属的容器中。它们之间互不干涉,拥有各自的资源配额,可以被调度在整个集群里的任何一台机器上。而这,正是一个 PaaS 系统最理想的工作状态,也是所谓“微服务”思想得以落地的先决条件。

当然,如果只做到“封装微服务、调度单容器”这一层次,Docker Swarm 项目就已经绰绰有余了。如果再加上 Compose 项目,你甚至还具备了处理一些简单依赖关系的能力,比如:一个“Web 容器”和它要访问的数据库“DB 容器”。

在 Compose 项目中,你可以为这样的两个容器定义一个“link”,而 Docker 项目则会负责维护这个“link”关系,其具体做法是:Docker 会在 Web 容器中,将 DB 容器的 IP 地址、端口等信息以环境变量的方式注入进去,供应用进程使用,

    DB_NAME=/web/db
    DB_PORT=tcp://172.17.0.5:5432
    DB_PORT_5432_TCP=tcp://172.17.0.5:5432
    DB_PORT_5432_TCP_PROTO=tcp
    DB_PORT_5432_TCP_PORT=5432
    DB_PORT_5432_TCP_ADDR=172.17.0.5

而当 DB 容器发生变化时(比如,镜像更新,被迁移到其他宿主机上等等),这些环境变量的值会由 Docker 项目自动更新。这就是平台项目自动地处理容器间关系的典型例子。

可是,如果我们现在的需求是,要求这个项目能够处理前面提到的所有类型的关系,甚至还要能够支持未来可能出现的更多种类的关系呢?

这时,“link”这种单独针对一种案例设计的解决方案就太过简单了。如果你做过架构方面的工作,就会深有感触:一旦要追求项目的普适性,那就一定要从顶层开始做好设计。

所以,Kubernetes 项目最主要的设计思想是,从更宏观的角度,以统一的方式来定义任务之间的各种关系,并且为将来支持更多种类的关系留有余地。

比如,Kubernetes 项目对容器间的“访问”进行了分类,首先总结出了一类非常常见的“紧密交互”的关系,即:这些应用之间需要非常频繁的交互和访问;又或者,它们会直接通过本地文件进行信息交换。

围绕着容器和 Pod 不断向真实的技术场景扩展,我们就能够摸索出一幅如下所示的 Kubernetes 项目核心功能的“全景图”。

Kubernetes 项目核心功能的“全景图”

 

在 Kubernetes 项目中,我们所推崇的使用方法是:

  • 首先,通过一个“编排对象”,比如 Pod、Job、CronJob 等,来描述你试图管理的应用;
  • 然后,再为它定义一些“服务对象”,比如 Service、Secret、Horizontal Pod Autoscaler(自动水平扩展器)等。这些对象,会负责具体的平台级功能。

这种使用方法,就是所谓的“声明式 API”。这种 API 对应的“编排对象”和“服务对象”,都是 Kubernetes 项目中的 API 对象(API Object)。

过去很多的集群管理项目(比如 Yarn、Mesos,以及 Swarm)所擅长的,都是把一个容器,按照某种规则,放置在某个最佳节点上运行起来。这种功能,我们称为“调度”。

而 Kubernetes 项目所擅长的,是按照用户的意愿和整个系统的规则,完全自动化地处理好容器之间的各种关系。这种功能,就是我们经常听到的一个概念:编排。

所以说,Kubernetes 项目的本质,是为用户提供一个具有普遍意义的容器编排工具。


相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3月前
|
Kubernetes Docker Python
Docker 与 Kubernetes 容器化部署核心技术及企业级应用实践全方案解析
本文详解Docker与Kubernetes容器化技术,涵盖概念原理、环境搭建、镜像构建、应用部署及监控扩展,助你掌握企业级容器化方案,提升应用开发与运维效率。
766 108
|
2月前
|
存储 Kubernetes 网络安全
关于阿里云 Kubernetes 容器服务(ACK)添加镜像仓库的快速说明
本文介绍了在中国大陆地区因网络限制无法正常拉取 Docker 镜像的解决方案。作者所在的阿里云 Kubernetes 集群使用的是较旧版本的 containerd(1.2x),且无法直接通过 SSH 修改节点配置,因此采用了一种无需更改 Kubernetes 配置文件的方法。通过为 `docker.io` 添加 containerd 的镜像源,并使用脚本自动修改 containerd 配置文件中的路径错误(将错误的 `cert.d` 改为 `certs.d`),最终实现了通过多个镜像站点拉取镜像。作者还提供了一个可重复运行的脚本,用于动态配置镜像源。虽然该方案能缓解镜像拉取问题,
330 2
|
2月前
|
Kubernetes Devops Docker
Kubernetes 和 Docker Swarm:现代 DevOps 的理想容器编排工具
本指南深入解析 Kubernetes 与 Docker Swarm 两大主流容器编排工具,涵盖安装、架构、网络、监控等核心维度,助您根据团队能力与业务需求精准选型,把握云原生时代的技术主动权。
273 1
|
4月前
|
NoSQL Redis Docker
使用Docker Compose工具进行容器编排的教程
以上就是使用Docker Compose进行容器编排的基础操作。这能帮你更有效地在本地或者在服务器上部署和管理多容器应用。
449 11
|
8月前
|
存储 运维 Kubernetes
容器数据保护:基于容器服务 Kubernetes 版(ACK)备份中心实现K8s存储卷一键备份与恢复
阿里云ACK备份中心提供一站式容器化业务灾备及迁移方案,减少数据丢失风险,确保业务稳定运行。
|
4月前
|
存储 监控 测试技术
如何将现有的应用程序迁移到Docker容器中?
如何将现有的应用程序迁移到Docker容器中?
409 57

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多