【安全合规】python爬虫从0到1 -xpath网页解析(lxml库)

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 而我们仅仅只是需要该网页中的部分内容

文章目录

前言

在我们抓取网页内容的时候,通常是抓取一整个页面的内容,而我们仅仅只是需要该网页中的部分内容,那该如何去提取呢?本章就带你学习xpath插件的使用。去对网页的内容进行提取。


(一)xpath是什么

xpath是一门在XML文档中查找信息的语言,xpath可用来在XML 文档中对元素和属性进行遍历,主流的浏览器都支持xpath,因为html页面在DOM中表示为XHTML文档。

xpath语言是基于XML文档的树结构,并提供了浏览树的能力,通过多样的标准来选择节点。从而找到我们想要的数据。


首先我们需要在chrome浏览器中安装xpath插件。

可以到谷歌应用商店搜索下载。image.png

(二)xpath的基本语法

  1. 路径查询。image.png
  2. 谓词查询image.png
  3. 属性查询image.png
  4. 模糊查询image.png
  5. 内容查询image.png

(三) lxml

lxml是python的一个解析库,支持HTML和XML的解析,支持XPath解析方式,而且解析效率非常高。

在使用前我们需要在pycharm里安装lxml库。

在终端输入指令即可:image.png

(四)lxml库的使用

  1. 导入lxml.etree
from lxml import etree
  1. 解析本地文件
tree = etree.parse(xxx.html) #解析本地文件
  1. 解析服务器响应文件
tree = etree.HTML(content)  #解析网页文件
  1. 返回结果
result = tree.xpath('//div/div/@aria-label')[0]

注:xpath返回的结果类型为列表,当结果有许多值时我们可以使用下标来取我们想要的值。

(五)实例演示

import urllib.request
from lxml import etree
import urllib.parse
url ='https://www.baidu.com/s?'
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36'
}
cre_data = {
    'wd' : '这里写关键词'
}
data = urllib.parse.urlencode(cre_data)
url = url + data
request = urllib.request.Request(url = url , headers = headers )
response = urllib.request.urlopen(request)
content = response.read().decode('utf-8')
print(content)
# tree = etree.parse(xxx.html) #解析本地文件
tree = etree.HTML(content)  #解析网页文件
result = tree.xpath('//div/div/@aria-label')[0]
print(result)
相关文章
|
27天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
77 6
|
21天前
|
算法 Python
Python 大神修炼手册:图的深度优先&广度优先遍历,深入骨髓的解析
在 Python 编程中,掌握图的深度优先遍历(DFS)和广度优先遍历(BFS)是进阶的关键。这两种算法不仅理论重要,还能解决实际问题。本文介绍了图的基本概念、邻接表表示方法,并给出了 DFS 和 BFS 的 Python 实现代码示例,帮助读者深入理解并应用这些算法。
29 2
|
26天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
42 7
|
25天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
28天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
57 4
|
1月前
|
测试技术 开发者 Python
深入浅出:Python中的装饰器解析与应用###
【10月更文挑战第22天】 本文将带你走进Python装饰器的世界,揭示其背后的魔法。我们将一起探索装饰器的定义、工作原理、常见用法以及如何自定义装饰器,让你的代码更加简洁高效。无论你是Python新手还是有一定经验的开发者,相信这篇文章都能为你带来新的启发和收获。 ###
21 1
|
1月前
|
设计模式 测试技术 开发者
Python中的装饰器深度解析
【10月更文挑战第24天】在Python的世界中,装饰器是那些能够为函数或类“添彩”的魔法工具。本文将带你深入理解装饰器的概念、工作原理以及如何自定义装饰器,让你的代码更加优雅和高效。
|
2月前
|
XML 前端开发 数据格式
Beautiful Soup 解析html | python小知识
在数据驱动的时代,网页数据是非常宝贵的资源。很多时候我们需要从网页上提取数据,进行分析和处理。Beautiful Soup 是一个非常流行的 Python 库,可以帮助我们轻松地解析和提取网页中的数据。本文将详细介绍 Beautiful Soup 的基础知识和常用操作,帮助初学者快速入门和精通这一强大的工具。【10月更文挑战第11天】
62 2
|
2月前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。
|
2月前
|
Web App开发 SQL 数据库
使用 Python 解析火狐浏览器的 SQLite3 数据库
本文介绍如何使用 Python 解析火狐浏览器的 SQLite3 数据库,包括书签、历史记录和下载记录等。通过安装 Python 和 SQLite3,定位火狐数据库文件路径,编写 Python 脚本连接数据库并执行 SQL 查询,最终输出最近访问的网站历史记录。