雪花算法(snowflake) :分布式环境,生成全局唯一的订单号

简介: 雪花算法(snowflake) :分布式环境,生成全局唯一的订单号

snowflake方案

snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。

这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等。

其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。

比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示:

整个结构是64位,所以我们在Java中可以使用long来进行存储。 该算法实现基本就是二进制操作,单机每秒内理论上最多可以生成1024*(2^12),也就是409.6万个ID(1024 X 4096 = 4194304)

 

 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

  •  1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
  • 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
  •  10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId。10-bit机器可以分别表示1024台机器。如果我们对IDC划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。这样就可以表示32个IDC,每个IDC下可以有32台机器,可以根据自身需求定义。
  • 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号。12个自增序列号可以表示2^12个ID,理论上snowflake方案的QPS约为409.6w/s,这种分配方式可以保证在任何一个IDC的任何一台机器在任意毫秒内生成的ID都是不同的。

加起来刚好64位,为一个Long型。


优点:

整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。

  • 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
  • 可以根据自身业务特性分配bit位,非常灵活。


缺点:


SnowFlake算法代码

public class SnowflakeIdWorker {
 // ==============================Fields==================
    /** 开始时间截 (2019-08-06) */
    private final long twepoch = 1565020800000L;
    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;
    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;
    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;
    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;
    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
    /** 工作机器ID(0~31) */
    private long workerId;
    /** 数据中心ID(0~31) */
    private long datacenterId;
    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;
    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;
     //==============================Constructors====================
    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    // ==============================Methods=================================
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }
        //上次生成ID的时间截
        lastTimestamp = timestamp;
        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }
    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }
    //==============================Test=============================================
    /** 测试 */
    public static void main(String[] args) {
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
        for (int i = 0; i < 1000; i++) {
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}

snowflake实现方式1

apache.commons.lang3包
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-lang3</artifactId>
    <version>3.6</version>
</dependency>
读取配置文件:https://blog.csdn.net/fly910905/article/details/78737323


工具类

package com.datalook.util.common;
import org.apache.commons.lang3.time.DateFormatUtils;
import java.util.Date;
/**
 * 
 * @Title:  订单号生成
 * @ClassName:OrderIdUtils.java
 * @Description:
 *
 * @Copyright 2016-2017  - Powered By 研发中心
 * @author: 王延飞
 * @date:2018年3月22日 下午7:43:30
 * @version V1.0
 */
public class OrderIdUtils {
    // 最近的时间戳
    private long lastTimestamp=0;
    //机器id 2位
    private final String machineId;
    // 0,并发控制
    private long sequence = 0L;
    // 序列号的最大值
    private final int sequenceMax = 9999;
    public OrderIdUtils(String machineId) {
        this.machineId = machineId;
    }
    /**
     * 生成订单号
     */
    public synchronized String nextId(){
        Date now=new Date();
        String time= DateFormatUtils.format(now,"yyMMddHHmmssSSS");
        long timestamp = now.getTime();
        if (this.lastTimestamp == timestamp) {
            // 如果上一个timestamp与新产生的相等,则sequence加一(0-4095循环);
            // 对新的timestamp,sequence从0开始
            this.sequence = this.sequence + 1 % this.sequenceMax;
            if (this.sequence == 0) {
                // 重新生成timestamp
                timestamp = this.tilNextMillis(this.lastTimestamp);
            }
        } else {
            this.sequence = 0;
        }
        this.lastTimestamp= timestamp;
        StringBuilder sb=new StringBuilder(time).append(machineId).append(leftPad(sequence,4));
        return sb.toString();
    }
    /**
     * 补码
     * @param i
     * @param n
     * @return
     */
    private String leftPad(long i,int n){
        String s = String.valueOf(i);
        StringBuilder sb=new StringBuilder();
        int c=n-s.length();
        c=c<0?0:c;
        for (int t=0;t<c;t++){
            sb.append("0");
        }
        return sb.append(s).toString();
    }
    /**
     * 等待下一个毫秒的到来, 保证返回的毫秒数在参数lastTimestamp之后
     */
    private long tilNextMillis(long lastTimestamp) {
        long timestamp = System.currentTimeMillis();
        while (timestamp <= lastTimestamp) {
            timestamp = System.currentTimeMillis();
        }
        return timestamp;
    }
    // 这里读取的是配置文件
    // 机器id(我这里是01,正式环境建议使用机器IP)
    // 注意:分布式环境,注意每台机器的id要保证不同;也可以使用机器ip,映射成一个数字编号(如01:192.168.55.12)
    private static String myid= SysConstant.LOCAL_MACHINE_ID;
    // 示例
    private static OrderIdUtils instance = new OrderIdUtils(myid);
    public static OrderIdUtils getInstance() {
        return instance;
    }
    /**
     * 
     * @Title: 获取订单号
     * @return String
     * @Description:
     *
     * @author: 王延飞
     * @date: 2018年3月22日 下午7:56:56
     */
    public static  String getOrderNumber() {
        OrderIdUtils orderId = OrderIdUtils.getInstance();
        String nextId = orderId.nextId();
        return nextId;
    }
    /**
     * 调用
     */
    public static void main(String[] args) {
        OrderIdUtils orderId= OrderIdUtils.getInstance();
        String nextId = orderId.nextId();
        int length = nextId.length();
        System.out.println(nextId);
        System.out.println(length);
    }
}


snowflake实现方式2

引入hutool依赖

<dependency>
    <groupId>cn.hutool</groupId>
    <artifactId>hutool-captcha</artifactId>
    <version>${hutool.version}</version>
</dependency>

ID 生成器

public class IdGenerator {
    private long workerId = 0;
    @PostConstruct
    void init() {
        try {
            workerId = NetUtil.ipv4ToLong(NetUtil.getLocalhostStr());
            log.info("当前机器 workerId: {}", workerId);
        } catch (Exception e) {
            log.warn("获取机器 ID 失败", e);
            workerId = NetUtil.getLocalhost().hashCode();
            log.info("当前机器 workerId: {}", workerId);
        }
    }
    /**
     * 获取一个批次号,形如 2019071015301361000101237
     * <p>
     * 数据库使用 char(25) 存储
     *
     * @param tenantId 租户ID,5 位
     * @param module   业务模块ID,2 位
     * @return 返回批次号
     */
    public synchronized String batchId(int tenantId, int module) {
        String prefix = DateTime.now().toString(DatePattern.PURE_DATETIME_MS_PATTERN);
        return prefix + tenantId + module + RandomUtil.randomNumbers(3);
    }
    @Deprecated
    public synchronized String getBatchId(int tenantId, int module) {
        return batchId(tenantId, module);
    }
    /**
     * 生成的是不带-的字符串,类似于:b17f24ff026d40949c85a24f4f375d42
     *
     * @return
     */
    public String simpleUUID() {
        return IdUtil.simpleUUID();
    }
    /**
     * 生成的UUID是带-的字符串,类似于:a5c8a5e8-df2b-4706-bea4-08d0939410e3
     *
     * @return
     */
    public String randomUUID() {
        return IdUtil.randomUUID();
    }
    private Snowflake snowflake = IdUtil.createSnowflake(workerId, 1);
    public synchronized long snowflakeId() {
        return snowflake.nextId();
    }
    public synchronized long snowflakeId(long workerId, long dataCenterId) {
        Snowflake snowflake = IdUtil.createSnowflake(workerId, dataCenterId);
        return snowflake.nextId();
    }
    /**
     * 生成类似:5b9e306a4df4f8c54a39fb0c
     * <p>
     * ObjectId 是 MongoDB 数据库的一种唯一 ID 生成策略,
     * 是 UUID version1 的变种,详细介绍可见:服务化框架-分布式 Unique ID 的生成方法一览。
     *
     * @return
     */
    public String objectId() {
        return ObjectId.next();
    }
}

参考链接:https://juejin.im/post/5d8882d8f265da03e369c063



目录
相关文章
|
1月前
|
消息中间件 算法 分布式数据库
Raft算法:分布式一致性领域的璀璨明珠
【4月更文挑战第21天】Raft算法是分布式一致性领域的明星,通过领导者选举、日志复制和安全性解决一致性问题。它将复杂问题简化,角色包括领导者、跟随者和候选者。领导者负责日志复制,确保多数节点同步。实现细节涉及超时机制、日志压缩和网络分区处理。广泛应用于分布式数据库、存储系统和消息队列,如Etcd、TiKV。其简洁高效的特点使其在分布式系统中备受青睐。
|
1月前
|
算法 分布式数据库
Paxos算法:分布式一致性的基石
【4月更文挑战第21天】Paxos算法是分布式一致性基础,由Leslie Lamport提出,包含准备和提交阶段,保证安全性和活性。通过提案编号、接受者和学习者实现,广泛应用于分布式数据库、锁和配置管理。其简单、高效、容错性强,影响了后续如Raft等算法,是理解分布式系统一致性关键。
|
1月前
|
XML 存储 缓存
记一次雪花算法遇到的 生产事故!
最近生产环境遇到一个问题: 现象:创建工单、订单等地方,全都创建数据失败。 初步排查:报错信息为duplicate key,意思是保存数据的时候,报主键 id 重复,而这些 id 都是由雪花算法生成的,按道理来说,雪花算法是生成分布式唯一 ID,不应该生成重复的 ID。
|
11天前
|
存储 算法 Java
分布式唯一ID解决方案-雪花算法
分布式唯一ID解决方案-雪花算法
10 0
|
1月前
|
算法
【免费】基于ADMM算法的多微网电能交互分布式运行策略(matlab代码)
【免费】基于ADMM算法的多微网电能交互分布式运行策略(matlab代码)
|
1月前
|
算法 Serverless 调度
基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究(matlab代码)
基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究(matlab代码)
|
28天前
|
算法 程序员 分布式数据库
分布式一致性必备:一文读懂Raft算法
Raft算法是一种用于分布式系统中复制日志一致性管理的算法。它通过选举领导者来协调日志复制,确保所有节点数据一致。算法包括心跳机制、选举过程、日志复制和一致性保证。当领导者失效时,节点会重新选举,保证高可用性。Raft易于理解和实现,提供强一致性,常用于分布式数据库和协调服务。作者小米分享了相关知识,鼓励对分布式系统感兴趣的读者进一步探索。
150 0
|
1月前
|
缓存 算法 关系型数据库
深度思考:雪花算法snowflake分布式id生成原理详解
雪花算法snowflake是一种优秀的分布式ID生成方案,其优点突出:它能生成全局唯一且递增的ID,确保了数据的一致性和准确性;同时,该算法灵活性强,可自定义各部分bit位,满足不同业务场景的需求;此外,雪花算法生成ID的速度快,效率高,能有效应对高并发场景,是分布式系统中不可或缺的组件。
241 2
深度思考:雪花算法snowflake分布式id生成原理详解
|
1月前
|
算法 Go 分布式数据库
构建高可用的分布式数据库集群:使用Go语言与Raft共识算法
随着数据量的爆炸式增长,单一数据库服务器已难以满足高可用性和可扩展性的需求。在本文中,我们将探讨如何使用Go语言结合Raft共识算法来构建一个高可用的分布式数据库集群。我们不仅会介绍Raft算法的基本原理,还会详细阐述如何利用Go语言的并发特性和网络编程能力来实现这一目标。此外,我们还将分析构建过程中可能遇到的挑战和解决方案,为读者提供一个完整的实践指南。
|
1月前
|
存储 分布式计算 负载均衡
分布式(计算机算法)
分布式(计算机算法)