雪花算法(snowflake) :分布式环境,生成全局唯一的订单号

简介: 雪花算法(snowflake) :分布式环境,生成全局唯一的订单号

snowflake方案

snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。

这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等。

其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。

比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示:

整个结构是64位,所以我们在Java中可以使用long来进行存储。 该算法实现基本就是二进制操作,单机每秒内理论上最多可以生成1024*(2^12),也就是409.6万个ID(1024 X 4096 = 4194304)

 

 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

  •  1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
  • 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
  •  10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId。10-bit机器可以分别表示1024台机器。如果我们对IDC划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。这样就可以表示32个IDC,每个IDC下可以有32台机器,可以根据自身需求定义。
  • 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号。12个自增序列号可以表示2^12个ID,理论上snowflake方案的QPS约为409.6w/s,这种分配方式可以保证在任何一个IDC的任何一台机器在任意毫秒内生成的ID都是不同的。

加起来刚好64位,为一个Long型。


优点:

整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。

  • 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
  • 可以根据自身业务特性分配bit位,非常灵活。


缺点:


SnowFlake算法代码

public class SnowflakeIdWorker {
 // ==============================Fields==================
    /** 开始时间截 (2019-08-06) */
    private final long twepoch = 1565020800000L;
    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;
    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;
    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;
    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;
    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
    /** 工作机器ID(0~31) */
    private long workerId;
    /** 数据中心ID(0~31) */
    private long datacenterId;
    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;
    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;
     //==============================Constructors====================
    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    // ==============================Methods=================================
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }
        //上次生成ID的时间截
        lastTimestamp = timestamp;
        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }
    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }
    //==============================Test=============================================
    /** 测试 */
    public static void main(String[] args) {
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
        for (int i = 0; i < 1000; i++) {
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}

snowflake实现方式1

apache.commons.lang3包
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-lang3</artifactId>
    <version>3.6</version>
</dependency>
读取配置文件:https://blog.csdn.net/fly910905/article/details/78737323


工具类

package com.datalook.util.common;
import org.apache.commons.lang3.time.DateFormatUtils;
import java.util.Date;
/**
 * 
 * @Title:  订单号生成
 * @ClassName:OrderIdUtils.java
 * @Description:
 *
 * @Copyright 2016-2017  - Powered By 研发中心
 * @author: 王延飞
 * @date:2018年3月22日 下午7:43:30
 * @version V1.0
 */
public class OrderIdUtils {
    // 最近的时间戳
    private long lastTimestamp=0;
    //机器id 2位
    private final String machineId;
    // 0,并发控制
    private long sequence = 0L;
    // 序列号的最大值
    private final int sequenceMax = 9999;
    public OrderIdUtils(String machineId) {
        this.machineId = machineId;
    }
    /**
     * 生成订单号
     */
    public synchronized String nextId(){
        Date now=new Date();
        String time= DateFormatUtils.format(now,"yyMMddHHmmssSSS");
        long timestamp = now.getTime();
        if (this.lastTimestamp == timestamp) {
            // 如果上一个timestamp与新产生的相等,则sequence加一(0-4095循环);
            // 对新的timestamp,sequence从0开始
            this.sequence = this.sequence + 1 % this.sequenceMax;
            if (this.sequence == 0) {
                // 重新生成timestamp
                timestamp = this.tilNextMillis(this.lastTimestamp);
            }
        } else {
            this.sequence = 0;
        }
        this.lastTimestamp= timestamp;
        StringBuilder sb=new StringBuilder(time).append(machineId).append(leftPad(sequence,4));
        return sb.toString();
    }
    /**
     * 补码
     * @param i
     * @param n
     * @return
     */
    private String leftPad(long i,int n){
        String s = String.valueOf(i);
        StringBuilder sb=new StringBuilder();
        int c=n-s.length();
        c=c<0?0:c;
        for (int t=0;t<c;t++){
            sb.append("0");
        }
        return sb.append(s).toString();
    }
    /**
     * 等待下一个毫秒的到来, 保证返回的毫秒数在参数lastTimestamp之后
     */
    private long tilNextMillis(long lastTimestamp) {
        long timestamp = System.currentTimeMillis();
        while (timestamp <= lastTimestamp) {
            timestamp = System.currentTimeMillis();
        }
        return timestamp;
    }
    // 这里读取的是配置文件
    // 机器id(我这里是01,正式环境建议使用机器IP)
    // 注意:分布式环境,注意每台机器的id要保证不同;也可以使用机器ip,映射成一个数字编号(如01:192.168.55.12)
    private static String myid= SysConstant.LOCAL_MACHINE_ID;
    // 示例
    private static OrderIdUtils instance = new OrderIdUtils(myid);
    public static OrderIdUtils getInstance() {
        return instance;
    }
    /**
     * 
     * @Title: 获取订单号
     * @return String
     * @Description:
     *
     * @author: 王延飞
     * @date: 2018年3月22日 下午7:56:56
     */
    public static  String getOrderNumber() {
        OrderIdUtils orderId = OrderIdUtils.getInstance();
        String nextId = orderId.nextId();
        return nextId;
    }
    /**
     * 调用
     */
    public static void main(String[] args) {
        OrderIdUtils orderId= OrderIdUtils.getInstance();
        String nextId = orderId.nextId();
        int length = nextId.length();
        System.out.println(nextId);
        System.out.println(length);
    }
}


snowflake实现方式2

引入hutool依赖

<dependency>
    <groupId>cn.hutool</groupId>
    <artifactId>hutool-captcha</artifactId>
    <version>${hutool.version}</version>
</dependency>

ID 生成器

public class IdGenerator {
    private long workerId = 0;
    @PostConstruct
    void init() {
        try {
            workerId = NetUtil.ipv4ToLong(NetUtil.getLocalhostStr());
            log.info("当前机器 workerId: {}", workerId);
        } catch (Exception e) {
            log.warn("获取机器 ID 失败", e);
            workerId = NetUtil.getLocalhost().hashCode();
            log.info("当前机器 workerId: {}", workerId);
        }
    }
    /**
     * 获取一个批次号,形如 2019071015301361000101237
     * <p>
     * 数据库使用 char(25) 存储
     *
     * @param tenantId 租户ID,5 位
     * @param module   业务模块ID,2 位
     * @return 返回批次号
     */
    public synchronized String batchId(int tenantId, int module) {
        String prefix = DateTime.now().toString(DatePattern.PURE_DATETIME_MS_PATTERN);
        return prefix + tenantId + module + RandomUtil.randomNumbers(3);
    }
    @Deprecated
    public synchronized String getBatchId(int tenantId, int module) {
        return batchId(tenantId, module);
    }
    /**
     * 生成的是不带-的字符串,类似于:b17f24ff026d40949c85a24f4f375d42
     *
     * @return
     */
    public String simpleUUID() {
        return IdUtil.simpleUUID();
    }
    /**
     * 生成的UUID是带-的字符串,类似于:a5c8a5e8-df2b-4706-bea4-08d0939410e3
     *
     * @return
     */
    public String randomUUID() {
        return IdUtil.randomUUID();
    }
    private Snowflake snowflake = IdUtil.createSnowflake(workerId, 1);
    public synchronized long snowflakeId() {
        return snowflake.nextId();
    }
    public synchronized long snowflakeId(long workerId, long dataCenterId) {
        Snowflake snowflake = IdUtil.createSnowflake(workerId, dataCenterId);
        return snowflake.nextId();
    }
    /**
     * 生成类似:5b9e306a4df4f8c54a39fb0c
     * <p>
     * ObjectId 是 MongoDB 数据库的一种唯一 ID 生成策略,
     * 是 UUID version1 的变种,详细介绍可见:服务化框架-分布式 Unique ID 的生成方法一览。
     *
     * @return
     */
    public String objectId() {
        return ObjectId.next();
    }
}

参考链接:https://juejin.im/post/5d8882d8f265da03e369c063



目录
相关文章
|
1月前
|
算法 Go
[go 面试] 雪花算法与分布式ID生成
[go 面试] 雪花算法与分布式ID生成
|
11天前
|
机器学习/深度学习 分布式计算 PyTorch
大规模数据集管理:DataLoader在分布式环境中的应用
【8月更文第29天】随着大数据时代的到来,如何高效地处理和利用大规模数据集成为了许多领域面临的关键挑战之一。本文将探讨如何在分布式环境中使用`DataLoader`来优化大规模数据集的管理与加载过程,并通过具体的代码示例展示其实现方法。
21 1
|
16天前
|
消息中间件 Java Kafka
如何在Kafka分布式环境中保证消息的顺序消费?深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据管道和流处理设计的分布式平台,以其高效的消息发布与订阅功能著称。在分布式环境中确保消息按序消费颇具挑战。本文首先介绍了Kafka通过Topic分区实现消息排序的基本机制,随后详细阐述了几种保证消息顺序性的策略,包括使用单分区Topic、消费者组搭配单分区消费、幂等性生产者以及事务支持等技术手段。最后,通过一个Java示例演示了如何利用Kafka消费者确保消息按序消费的具体实现过程。
34 3
|
25天前
|
资源调度 Java 调度
项目环境测试问题之Schedulerx2.0通过分布式分片任务解决单机计算瓶颈如何解决
项目环境测试问题之Schedulerx2.0通过分布式分片任务解决单机计算瓶颈如何解决
项目环境测试问题之Schedulerx2.0通过分布式分片任务解决单机计算瓶颈如何解决
|
1月前
|
存储 算法 NoSQL
(七)漫谈分布式之一致性算法下篇:一文从根上儿理解大名鼎鼎的Raft共识算法!
Raft通过一致性检查,能在一定程度上保证集群的一致性,但无法保证所有情况下的一致性,毕竟分布式系统各种故障层出不穷,如何在有可能发生各类故障的分布式系统保证集群一致性,这才是Raft等一致性算法要真正解决的问题。
67 11
|
1月前
|
存储 算法 索引
(六)漫谈分布式之一致性算法上篇:用二十六张图一探Raft共识算法奥妙之处!
现如今,大多数分布式存储系统都投向了Raft算法的怀抱,而本文就来聊聊大名鼎鼎的Raft算法/协议!
|
1月前
|
存储 算法 Java
(五)漫谈分布式之一致性算法篇:谁说Paxos晦涩难懂?你瞧这不一学就会!
没在时代发展的洪流中泯然于众的道理很简单,是因为它们并不仅是空中楼阁般的高大上理论,而是有着完整落地的思想,它们已然成为构建分布式系统不可或缺的底层基石,而本文则来好好聊聊分布式与一致性思想的落地者:Paxos与Raft协议(算法)。
|
1月前
|
监控 负载均衡 Java
(九)漫谈分布式之微服务组件篇:探索分布式环境下各核心组件的必要性!
本文将深入探讨微服务中各个组件的必要性,以此帮助各位更好地加深对分布式系统的掌握度。
|
20天前
|
存储 运维 监控
在Linux中,在分布式环境中如何实现文件系统冗余和同步?(例如DRBD、GlusterFS)
在Linux中,在分布式环境中如何实现文件系统冗余和同步?(例如DRBD、GlusterFS)
|
25天前
|
存储 缓存 自然语言处理
Lettuce的特性和内部实现问题之分布式环境中消息发送时的问题如何解决
Lettuce的特性和内部实现问题之分布式环境中消息发送时的问题如何解决
下一篇
DDNS