Java单例模式的不同写法(懒汉式、饿汉式、双检锁、静态内部类、枚举)

简介: Java单例模式的不同写法(懒汉式、饿汉式、双检锁、静态内部类、枚举)

目录

1、饿汉模式

2、懒汉模式

3、双重校验锁【推荐】

4、静态内部类【推荐】

5、枚举

6、单例模式的线程安全性



Java中单例(Singleton)模式是一种广泛使用的设计模式。单例模式的主要作用是保证在Java程序中,某个类只有一个实例存在。

它的核心在于,单例模式可以保证一个类仅创建一个实例,并提供一个访问它的全局访问点。

一些管理器和控制器常被设计成单例模式。

单例模式好处:

  1. 它能够避免实例对象的重复创建,不仅可以减少每次创建对象的时间开销,还可以节约内存空间;
  2. 能够避免由于操作多个实例导致的逻辑错误。
  3. 如果一个对象有可能贯穿整个应用程序,而且起到了全局统一管理控制的作用,那么单例模式也许是一个值得考虑的选择。

单例模式有很多种写法,大部分写法都或多或少有一些不足。下面将分别对这几种写法进行介绍。

该模式有三个基本要点:

  • 一是这个类只能有一个实例;
  • 二是它必须自行创建这个实例;
  • 三是它必须自行向整个系统提供这个实例。


1、饿汉模式

// 饿汉模式
public final class Singleton {
    private static Singleton instance=new Singleton();// 自行创建实例
    private Singleton(){}// 构造函数
    public static Singleton getInstance(){// 通过该函数向整个系统提供实例
        return instance;
    }
}


从代码中我们看到,类的构造函数定义为private的,保证其他类不能实例化此类,然后提供了一个静态实例并返回给调用者。饿汉模式是最简单的一种实现方式,饿汉模式在类加载的时候就对实例进行创建,实例在整个程序周期都存在

  • 它的好处是只在类加载的时候创建一次实例,不会存在多个线程创建多个实例的情况,避免了多线程同步的问题
  • 它的缺点也很明显,即使这个单例没有用到也会被创建,而且在类加载之后就被创建,内存就被浪费了。
  •  这种实现方式适合单例占用内存比较小,在初始化时就会被用到的情况。但是,如果单例占用的内存比较大,或单例只是在某个特定场景下才会用到,使用饿汉模式就不合适了,这时候就需要用到懒汉模式进行延迟加载。


2、懒汉模式

// 懒汉模式
public final class Singleton {
    private static Singleton instance= null;// 不实例化
    private Singleton(){}// 构造函数
    public static Singleton getInstance(){// 通过该函数向整个系统提供实例
        if(null == instance){// 当 instance 为 null 时,则实例化对象,否则直接返回对象
            instance = new Singleton();// 实例化对象
        }
        return instance;// 返回已存在的对象
    }
}


  • 好处:懒汉模式中单例是在需要的时候才去创建的,如果单例已经创建,再次调用获取接口将不会重新创建新的对象,而是直接返回之前创建的对象。
  • 适用于:如果某个单例使用的次数少,并且创建单例消耗的资源较多,那么就需要实现单例的按需创建,这个时候使用懒汉模式就是一个不错的选择。
  • 缺点:但是这里的懒汉模式并没有考虑线程安全问题,在多个线程可能会并发调用它的getInstance()方法,导致创建多个实例,因此需要加锁解决线程同步问题,实现如下:

以上代码在单线程下运行是没有问题的,但要运行在多线程下,就会出现实例化多个类对象的情况。这是怎么回事呢?

当线程 A 进入到 if 判断条件后,开始实例化对象,此时 instance 依然为 null;又有线程 B 进入到 if 判断条件中,之后也会通过条件判断,进入到方法里面创建一个实例对象。

所以我们需要对该方法进行加锁,保证多线程情况下仅创建一个实例。这里我们使用 Synchronized 同步锁来修饰 getInstance 方法:


// 懒汉模式 + synchronized 同步锁
public final class Singleton {
    private static Singleton instance= null;// 不实例化
    private Singleton(){}// 构造函数
    public static synchronized Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例
        if(null == instance){// 当 instance 为 null 时,则实例化对象,否则直接返回对象
            instance = new Singleton();// 实例化对象
        }
        return instance;// 返回已存在的对象
    }
}


但同步锁会增加锁竞争,带来系统性能开销,从而导致系统性能下降,因此这种方式也会降低单例模式的性能。

还有,每次请求获取类对象时,都会通过 getInstance() 方法获取,除了第一次为 null,其它每次请求基本都是不为 null 的。在没有加同步锁之前,是因为 if 判断条件为 null 时,才导致创建了多个实例。基于以上两点,我们可以考虑将同步锁放在 if 条件里面,这样就可以减少同步锁资源竞争。

// 懒汉模式 + synchronized 同步锁
public final class Singleton {
    private static Singleton instance= null;// 不实例化
    private Singleton(){}// 构造函数
    public static Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例
        if(null == instance){// 当 instance 为 null 时,则实例化对象,否则直接返回对象
          synchronized (Singleton.class){
              instance = new Singleton();// 实例化对象
          } 
        }
        return instance;// 返回已存在的对象
    }
}

 

你是不是觉得这样就可以了呢?答案是依然会创建多个实例。这是因为当多个线程进入到 if 判断条件里,虽然有同步锁,但是进入到判断条件里面的线程依然会依次获取到锁创建对象,然后再释放同步锁。所以我们还需要在同步锁里面再加一个判断条件


3、双重校验锁【推荐】


  1. 这个问题在Java面试中经常被问到,但是面试官对回答此问题的满意度仅为50%。
  2. 一半的人写不出双检锁,还有一半的人说不出它的隐患Java1.5是如何对它修正的。
  3. 它其实是一个用来创建线程安全的单例的老方法,当单例实例第一次被创建时它试图用单个锁进行性能优化,
  4. 但是由于太过于复杂在JDK1.4中它是失败的,我个人也不喜欢它。无论如何,即便你也不喜欢它但是还是要了解一下,因为它经常被问到。
  • 加锁的懒汉模式看起来即解决了线程并发问题,又实现了延迟加载,然而它存在着性能问题,依然不够完美。
  • synchronized修饰的同步方法比一般方法要慢很多,如果多次调用getInstance(),累积的性能损耗就比较大了。
  • 因此就有了双重校验锁,先看下它的实现代码。
// 懒汉模式 + synchronized 同步锁 + double-check
public final class Singleton {
    private static Singleton instance= null;// 不实例化
    private Singleton(){}// 构造函数
    public static Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例
        if(null == instance){// 第一次判断,当 instance 为 null 时,则实例化对象,否则直接返回对象
          synchronized (Singleton.class){// 同步锁
             if(null == instance){// 第二次判断
                instance = new Singleton();// 实例化对象
             }
          } 
        }
        return instance;// 返回已存在的对象
    }
}


可以看到上面在同步代码块内多了一层instance为空的判断。由于单例对象只需要创建一次,如果后面再次调用getInstance()只需要直接返回单例对象。

  • 因此,大部分情况下,调用getInstance()都不会执行到同步代码块,从而提高了程序性能。
  • 不过还需要考虑一种情况,假如两个线程A、B,A执行了if (instance == null)语句,它会认为单例对象没有创建,此时线程切到B也执行了同样的语句,B也认为单例对象没有创建,然后两个线程依次执行同步代码块,并分别创建了一个单例对象。为了解决这个问题,还需要在同步代码块中增加if (instance == null)语句,也就是上面看到的代码中的校验2。
  • 双检锁隐患:

我们看到双重校验锁即实现了延迟加载,又解决了线程并发问题,同时还解决了执行效率问题,是否真的就万无一失了呢?

  • 这里要提到Java中的指令重排优化和 Happens-Before 规则。所谓指令重排优化是指在不改变原语义的情况下,通过调整指令的执行顺序让程序运行的更快
  • JVM中并没有规定编译器优化相关的内容,也就是说JVM可以自由的进行指令重排序的优化
  • 这个问题的关键就在于由于指令重排优化的存在,导致初始化Singleton将对象地址赋给instance字段的顺序是不确定的。
  • 在某个线程创建单例对象时,在构造方法被调用之前,就为该对象分配了内存空间并将对象的字段设置为默认值。
  • 此时就可以将分配的内存地址赋值给instance字段了,然而该对象可能还没有初始化。若紧接着另外一个线程来调用getInstance,取到的就是状态不正确的对象,程序就会出错。

 Happens-Before 规则

通过字面意思,你可能会误以为是前一个操作发生在后一个操作之前。然而真正的意思是,前一个操作的结果可以被后续的操作获取。这条规则规范了编译器对程序的重排序优化。

  • JDK5的修正:以上就是双重校验锁会失效的原因,不过还好在JDK1.5及之后版本增加了volatile关键字
  • volatile的一个语义是禁止指令重排序优化,也就保证了instance变量被赋值的时候对象已经是初始化过的,从而避免了上面说到的问题。
  • Java中的volatile 变量是什么?
  1. 理解volatile关键字的作用的前提是要理解Java内存模型volatile关键字的作用主要有两个:
  2.  
  3. 1多线程主要围绕可见性原子性两个特性而展开,使用volatile关键字修饰的变量,保证了其在多线程之间的可见性
  4. 即每次读取到volatile变量,一定是最新的数据
  5.  
  6. 2)代码底层执行不像我们看到的高级语言—-Java程序这么简单,
  7. 它的执行是Java代码–>字节码–>根据字节码执行对应的C/C++代码–>C/C++代码被编译成汇编语言–>和硬件电路交互
  8. 现实中,为了获取更好的性能JVM可能会对指令进行重排序,多线程下可能会出现一些意想不到的问题。
  9. 使用volatile则会对禁止语义重排序,当然这也一定程度上降低了代码执行效率
  10.  
  11.  
  12. 从实践角度而言,volatile的一个重要作用就是和CAS结合,保证了原子性,
  13. 详细的可以参见java.util.concurrent.atomic包下的类,比如AtomicInteger
  1. CASCompare and swap)比较和替换是设计并发算法时用到的一种技术。
  2. 简单来说,比较和替换是使用一个期望值和一个变量的当前值进行比较,如果当前变量的值与我们期望的值相等,就使用一个新值替换当前变量的值。
  1. volatile是一个特殊的修饰符,只有成员变量才能使用它。
  2. Java并发程序缺少同步类的情况下,多线程对成员变量的操作对其它线程是透明的。
  3. volatile变量可以保证下一个读取操作会在前一个写操作之后发生来源: http://blog.csdn.net/fly910905/article/details/79283557


  • 代码如下:
// 懒汉模式 + synchronized 同步锁 + double-check
public final class Singleton {
    private volatile static Singleton instance= null;// 不实例化
    public List<String> list = null;//list 属性
    private Singleton(){
      list = new ArrayList<String>();
    }// 构造函数
    public static Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例
        if(null == instance){// 第一次判断,当 instance 为 null 时,则实例化对象,否则直接返回对象
          synchronized (Singleton.class){// 同步锁
             if(null == instance){// 第二次判断
                instance = new Singleton();// 实例化对象
             }
          } 
        }
        return instance;// 返回已存在的对象
    }
}


4、静态内部类【推荐】


  • 除了上面的三种方式,还有另外一种实现单例的方式,通过静态内部类来实现。
  • 首先看一下它的实现代码:
// 懒汉模式 内部类实现
public final class Singleton {
  public List<String> list = null;// list 属性
  private Singleton() {// 构造函数
    list = new ArrayList<String>();
  }
  // 内部类实现
  public static class InnerSingleton {
    private static Singleton instance=new Singleton();// 自行创建实例
  }
  public static Singleton getInstance() {
    return InnerSingleton.instance;// 返回内部类中的静态变量
  }
}


  • 这种方式同样利用了类加载机制来保证只创建一个instance实例。它与饿汉模式一样,也是利用了类加载机制,因此不存在多线程并发的问题。
  • 不一样的是,它是在内部类里面去创建对象实例。
  • 这样的话,只要应用中不使用内部类,JVM就不会去加载这个单例类,也就不会创建单例对象,从而实现懒汉式的延迟加载。也就是说这种方式可以同时保证延迟加载和线程安全


5、枚举

枚举模式最安全,反射和序列化都是单例。

《Effective Java》作者也是强烈推荐枚举方式实现单例。

public class Resource {
    private Resource(){}
    /**
     * 枚举类型是线程安全的,并且只会装载一次
     */
    private enum Singleton{
        INSTANCE;
        private final Resource instance;
        Singleton(){
            instance = new Resource();
        }
        private Resource getInstance(){
            return instance;
        }
    }
    public static Resource getInstance(){
        return Singleton.INSTANCE.getInstance();
    }
}


  • 上面的类Resource是我们要应用单例模式的资源,具体可以表现为网络连接,数据库连接,线程池等等。
  • 获取资源的方式很简单,只要 Singleton.INSTANCE.getInstance() 即可获得所要实例。


下面我们来看看单例是如何被保证的: 

  1. 首先,在枚举中我们明确了构造方法限制为私有,在我们访问枚举实例时会执行构造方法。
  2. 同时每个枚举实例都是static final类型的,也就表明只能被实例化一次。在调用构造方法时,我们的单例被实例化。 
  3. 也就是说,因为enum中的实例被保证只会被实例化一次,所以我们的INSTANCE也被保证实例化一次。 
  • 可以看到,枚举实现单例还是比较简单的,除此之外我们再来看一下Enum这个类的声明:

public abstract class Enum<E extends Enum<E>>implements Comparable<E>, Serializable

  • 可以看到,枚举也提供了序列化机制。某些情况,比如我们要通过网络传输一个数据库连接的句柄,会提供很多帮助。
  • 最后借用 《Effective Java》一书中的话,
  • 单元素的枚举类型已经成为实现Singleton的最佳方法。

或者使用

public enum DataSourceEnum {
    DATASOURCE;
    private DBConnection connection = null;
    private DataSourceEnum() {
        connection = new DBConnection();
    }
    public DBConnection getConnection() {
        return connection;
    }
}  


示例:

/**
 * @Title: java单例之enum实现方式
 * @ClassName: EnumSingleton.java
 * @Description:
 *
 * @Copyright 2016-2018 - Powered By 研发中心
 * @author: 王延飞
 * @date:  2018-02-07 20:02
 * @version V1.0
 */
public class EnumSingleton{
    private EnumSingleton(){}
    public static EnumSingleton getInstance(){
        return Singleton.INSTANCE.getInstance();
    }
    private static enum Singleton{
        INSTANCE;
        private EnumSingleton singleton;
        //JVM会保证此方法绝对只调用一次
        private Singleton(){
            singleton = new EnumSingleton();
        }
        public EnumSingleton getInstance(){
            return singleton;
        }
    }
    public static void main(String[] args) {
        EnumSingleton obj1 = EnumSingleton.getInstance();
        EnumSingleton obj2 = EnumSingleton.getInstance();
        //输出结果:obj1==obj2?true
        System.out.println("obj1==obj2?" + (obj1==obj2));
    }
}

 

  • 上面提到的四种实现单例的方式都有共同的缺点
  • 1)需要额外的工作来实现序列化,否则每次反序列化一个序列化的对象时都会创建一个新的实例。
  • 2)可以使用反射强行调用私有构造器(如果要避免这种情况,可以修改构造器,让它在创建第二个实例的时候抛异常)。

而枚举类很好的解决了这两个问题,使用枚举除了线程安全和防止反射调用构造器之外,还提供了自动序列化机制,防止反序列化的时候创建新的对象。

 

6、单例模式的线程安全性

首先要说的是单例模式的线程安全意味着:某个类的实例在多线程环境下只会被创建一次出来。单例模式有很多种的写法,我总结一下:

(1)饿汉式:线程安全

(2)懒汉式:非线程安全

(3)双检锁:线程安全

(4)静态内部类:线程安全

(5)枚举:线程安全

 

如何选择

如果我们在程序启动后,一定会加载到类,那么用饿汉模式实现的单例简单又实用

如果我们是写一些工具类,则优先考虑使用懒汉模式,因为很多项目可能会引用到 jar 包,但未必会使用到这个工具类,懒汉模式实现的单例可以避免提前被加载到内存中,占用系统资源。

参考来源: http://www.importnew.com/12773.html

 



目录
相关文章
|
15天前
|
Java
Java中ReentrantLock释放锁代码解析
Java中ReentrantLock释放锁代码解析
25 8
|
15天前
|
Java 调度
Java中常见锁的分类及概念分析
Java中常见锁的分类及概念分析
16 0
|
7天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
8天前
|
Java
浅谈Java的synchronized 锁以及synchronized 的锁升级
浅谈Java的synchronized 锁以及synchronized 的锁升级
8 0
|
10天前
|
存储 缓存 Java
线程同步的艺术:探索 JAVA 主流锁的奥秘
本文介绍了 Java 中的锁机制,包括悲观锁与乐观锁的并发策略。悲观锁假设多线程环境下数据冲突频繁,访问前先加锁,如 `synchronized` 和 `ReentrantLock`。乐观锁则在访问资源前不加锁,通过版本号或 CAS 机制保证数据一致性,适用于冲突少的场景。锁的获取失败时,线程可以选择阻塞(如自旋锁、适应性自旋锁)或不阻塞(如无锁、偏向锁、轻量级锁、重量级锁)。此外,还讨论了公平锁与非公平锁,以及可重入锁与非可重入锁的特性。最后,提到了共享锁(读锁)和排他锁(写锁)的概念,适用于不同类型的并发访问需求。
40 2
|
11天前
|
Java 程序员 编译器
Java中的线程同步与锁优化策略
【4月更文挑战第14天】在多线程编程中,线程同步是确保数据一致性和程序正确性的关键。Java提供了多种机制来实现线程同步,其中最常用的是synchronized关键字和Lock接口。本文将深入探讨Java中的线程同步问题,并分析如何通过锁优化策略提高程序性能。我们将首先介绍线程同步的基本概念,然后详细讨论synchronized和Lock的使用及优缺点,最后探讨一些锁优化技巧,如锁粗化、锁消除和读写锁等。
|
12天前
|
Java 编译器
Java并发编程中的锁优化策略
【4月更文挑战第13天】 在Java并发编程中,锁是一种常见的同步机制,用于保证多个线程之间的数据一致性。然而,不当的锁使用可能导致性能下降,甚至死锁。本文将探讨Java并发编程中的锁优化策略,包括锁粗化、锁消除、锁降级等方法,以提高程序的执行效率。
13 4
|
13天前
|
安全 Java 编译器
接口之美,内部之妙:深入解析Java的接口与内部类
接口之美,内部之妙:深入解析Java的接口与内部类
35 0
接口之美,内部之妙:深入解析Java的接口与内部类
|
15天前
|
Java API
Java基础—笔记—内部类、枚举、泛型篇
本文介绍了Java编程中的内部类、枚举和泛型概念。匿名内部类用于简化类的创建,常作为方法参数,其原理是生成一个隐含的子类。枚举用于表示有限的固定数量的值,常用于系统配置或switch语句中。泛型则用来在编译时增强类型安全性,接收特定数据类型,包括泛型类、泛型接口和泛型方法。
9 0
|
15天前
|
存储 Java
java接口和内部类
java接口和内部类