很用心的为你写了 9 道 MySQL 面试题(二)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: MySQL 一直是本人很薄弱的部分,后面会多输出 MySQL 的文章贡献给大家,毕竟 MySQL 涉及到数据存储、锁、磁盘寻道、分页等操作系统概念,而且互联网对 MySQL 的注重程度是不言而喻的,后面要加紧对 MySQL 的研究。写的如果不好,还请大家见谅。


优化器


经过分析器的词法分析和语法分析后,你这条 SQL 就合法了,MySQL 就知道你要做什么了。但是在执行前,还需要进行优化器的处理,优化器会判断你使用了哪种索引,使用了何种连接,优化器的作用就是确定效率最高的执行方案。


执行器


MySQL 通过分析器知道了你的 SQL 语句是否合法,你想要做什么操作,通过优化器知道了该怎么做效率最高,然后就进入了执行阶段,开始执行这条 SQL 语句

在执行阶段,MySQL 首先会判断你有没有执行这条语句的权限,没有权限的话,就会返回没有权限的错误。如果有权限,就打开表继续执行。打开表的时候,执行器就会根据表的引擎定义,去使用这个引擎提供的接口。对于有索引的表,执行的逻辑也差不多。

至此,MySQL 对于一条语句的执行过程也就完成了。


SQL 的执行顺序


我们在编写一个查询语句的时候

10.png


它的执行顺序你知道吗?这道题就给你一个回答。


FROM 连接


首先,对 SELECT 语句执行查询时,对FROM 关键字两边的表执行连接,会形成笛卡尔积,这时候会产生一个虚表VT1(virtual table)

首先先来解释一下什么是笛卡尔积

现在我们有两个集合 A = {0,1} , B = {2,3,4}

那么,集合 A * B 得到的结果就是

A * B = {(0,2)、(1,2)、(0,3)、(1,3)、(0,4)、(1,4)};

B * A = {(2,0)、{2,1}、{3,0}、{3,1}、{4,0}、(4,1)};

上面 A * B 和 B * A 的结果就可以称为两个集合相乘的 笛卡尔积

我们可以得出结论,A 集合和 B 集合相乘,包含了集合 A 中的元素和集合 B 中元素之和,也就是 A 元素的个数 * B 元素的个数

再来解释一下什么是虚表

在 MySQL 中,有三种类型的表

一种是永久表,永久表就是创建以后用来长期保存数据的表

一种是临时表,临时表也有两类,一种是和永久表一样,只保存临时数据,但是能够长久存在的;还有一种是临时创建的,SQL 语句执行完成就会删除。

一种是虚表,虚表其实就是视图,数据可能会来自多张表的执行结果。


ON 过滤


然后对 FROM 连接的结果进行 ON 筛选,创建 VT2,把符合记录的条件存在 VT2 中。


JOIN 连接


第三步,如果是 OUTER JOIN(left join、right join) ,那么这一步就将添加外部行,如果是 left join 就把 ON 过滤条件的左表添加进来,如果是 right join ,就把右表添加进来,从而生成新的虚拟表 VT3。


WHERE 过滤


第四步,是执行 WHERE 过滤器,对上一步生产的虚拟表引用 WHERE 筛选,生成虚拟表 VT4。

WHERE 和 ON 的区别

  • 如果有外部列,ON 针对过滤的是关联表,主表(保留表)会返回所有的列;
  • 如果没有添加外部列,两者的效果是一样的;

应用

  • 对主表的过滤应该使用 WHERE;
  • 对于关联表,先条件查询后连接则用 ON,先连接后条件查询则用 WHERE;


GROUP BY


根据 group by 字句中的列,会对 VT4 中的记录进行分组操作,产生虚拟机表 VT5。果应用了group by,那么后面的所有步骤都只能得到的 VT5 的列或者是聚合函数(count、sum、avg等)。


HAVING


紧跟着 GROUP BY 字句后面的是 HAVING,使用 HAVING 过滤,会把符合条件的放在 VT6


SELECT


第七步才会执行 SELECT 语句,将 VT6 中的结果按照 SELECT 进行刷选,生成 VT7





相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
6月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
4月前
|
关系型数据库 MySQL Java
字节面试: MySQL 百万级 导入发生的 “死锁” 难题如何解决?“2序4拆”,彻底攻克
字节面试: MySQL 百万级 导入发生的 “死锁” 难题如何解决?“2序4拆”,彻底攻克
字节面试: MySQL 百万级 导入发生的 “死锁” 难题如何解决?“2序4拆”,彻底攻克
|
6月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
|
11月前
|
存储 SQL 关系型数据库
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
|
6月前
|
SQL 存储 关系型数据库
滴滴面试:明明 mysql 加的是 行锁,怎么就变 表锁 了?
滴滴面试:明明 mysql 加的是 行锁,怎么就变 表锁 了?
|
10月前
|
存储 关系型数据库 MySQL
美团面试:MySQL为什么 不用 Docker部署?
45岁老架构师尼恩在读者交流群中分享了关于“MySQL为什么不推荐使用Docker部署”的深入分析。通过系统化的梳理,尼恩帮助读者理解为何大型MySQL数据库通常不使用Docker部署,主要涉及性能、管理复杂度和稳定性等方面的考量。文章详细解释了有状态容器的特点、Docker的资源隔离问题以及磁盘IO性能损耗,并提供了小型MySQL使用Docker的最佳实践。此外,尼恩还介绍了Share Nothing架构的优势及其应用场景,强调了配置管理和数据持久化的挑战。最后,尼恩建议读者参考《尼恩Java面试宝典PDF》以提升技术能力,更好地应对面试中的难题。
|
8月前
|
消息中间件 NoSQL 关系型数据库
去哪面试:1Wtps高并发,MySQL 热点行 问题, 怎么解决?
去哪面试:1Wtps高并发,MySQL 热点行 问题, 怎么解决?
去哪面试:1Wtps高并发,MySQL 热点行 问题, 怎么解决?
|
9月前
|
SQL 关系型数据库 MySQL
京东面试:MySQL MVCC是如何实现的?如何通过MVCC实现读已提交、可重复读隔离级别的?
1.请解释什么是MVCC,它在数据库中的作用是什么? 2.在MySQL中,MVCC是如何实现的?请简述其工作原理。 3.MVCC是如何解决读-写和写-写冲突的? 4.在并发环境中,当多个事务同时读取同一行数据时,MVCC是如何保证每个事务看到的数据版本是一致的? 5.MVCC如何帮助提高数据库的并发性能?
京东面试:MySQL MVCC是如何实现的?如何通过MVCC实现读已提交、可重复读隔离级别的?
|
10月前
|
存储 SQL 关系型数据库
MySQL 面试题
MySQL 的一些基础面试题
184 5

推荐镜像

更多