MongoDB:6-MongoDB的聚合和管道

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: MongoDB:6-MongoDB的聚合和管道

MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。有点类似sql语句中的 count(*)。

aggregate() 方法

MongoDB中聚合的方法使用aggregate()。


语法

aggregate() 方法的基本语法格式如下所示:

  1. db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)


实例

集合中的数据如下:

  1. {
  2.   _id: ObjectId(7df78ad8902c)
  3.   title: 'MongoDB Overview',
  4.   description: 'MongoDB is no sql database',
  5.   by_user: 'runoob.com',
  6.   url: 'http://www.runoob.com',
  7.   tags: ['mongodb', 'database', 'NoSQL'],
  8.   likes: 100
  9. },
  10. {
  11.   _id: ObjectId(7df78ad8902d)
  12.   title: 'NoSQL Overview',
  13.   description: 'No sql database is very fast',
  14.   by_user: 'runoob.com',
  15.   url: 'http://www.runoob.com',
  16.   tags: ['mongodb', 'database', 'NoSQL'],
  17.   likes: 10
  18. },
  19. {
  20.   _id: ObjectId(7df78ad8902e)
  21.   title: 'Neo4j Overview',
  22.   description: 'Neo4j is no sql database',
  23.   by_user: 'Neo4j',
  24.   url: 'http://www.neo4j.com',
  25.   tags: ['neo4j', 'database', 'NoSQL'],
  26.   likes: 750
  27. },


现在我们通过以上集合计算每个作者所写的文章数,使用aggregate()计算结果如下:

  1. > db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}])
  2. {
  3.   "result" : [
  4.      {
  5.         "_id" : "runoob.com",
  6.         "num_tutorial" : 2
  7.      },
  8.      {
  9.         "_id" : "Neo4j",
  10.         "num_tutorial" : 1
  11.      }
  12.   ],
  13.   "ok" : 1
  14. }
  15. >


以上实例类似sql语句: select by_user, count(*) from mycol group by by_user

在上面的例子中,我们通过字段by_user字段对数据进行分组,并计算by_user字段相同值的总和。

下表展示了一些聚合的表达式:

表达式 描述 实例
$sum 计算总和。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])
$avg 计算平均值 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$avg : "$likes"}}}])
$min 获取集合中所有文档对应值得最小值。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$min : "$likes"}}}])
$max 获取集合中所有文档对应值得最大值。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$max : "$likes"}}}])
$push 在结果文档中插入值到一个数组中。 db.mycol.aggregate([{$group : {_id : "$by_user", url : {$push: "$url"}}}])
$addToSet 在结果文档中插入值到一个数组中,但不创建副本。 db.mycol.aggregate([{$group : {_id : "$by_user", url : {$addToSet : "$url"}}}])
$first 根据资源文档的排序获取第一个文档数据。 db.mycol.aggregate([{$group : {_id : "$by_user", first_url : {$first : "$url"}}}])
$last 根据资源文档的排序获取最后一个文档数据 db.mycol.aggregate([{$group : {_id : "$by_user", last_url : {$last : "$url"}}}])

管道的概念

管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数

MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的

表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。


这里我们介绍一下聚合框架中常用的几个操作:

  1. $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
  2. $match:用于过滤数据,只输出符合条件的文档。$match使用MongoDB的标准查询操作。
  3. $limit:用来限制MongoDB聚合管道返回的文档数。
  4. $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
  5. $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
  6. $group:将集合中的文档分组,可用于统计结果。
  7. $sort:将输入文档排序后输出。
  8. $geoNear:输出接近某一地理位置的有序文档。


管道操作符实例

1、$project实例

  1. db.article.aggregate(
  2.    { $project : {
  3.        title : 1 ,
  4.        author : 1 ,
  5.    }}
  6. );


这样的话结果中就只还有_id,tilte和author三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:

  1. db.article.aggregate(
  2.    { $project : {
  3.        _id : 0 ,
  4.        title : 1 ,
  5.        author : 1
  6.    }});


2.$match实例

  1. db.articles.aggregate( [
  2.                        { $match : { score : { $gt : 70, $lte : 90 } } },
  3.                        { $group: { _id: null, count: { $sum: 1 } } }
  4.                       ] );

$match用于获取分数大于70小于或等于90记录,然后将符合条件的记录送到下一阶段$group管道操作符进行处理。


3.$skip实例

  1. db.article.aggregate(
  2.    { $skip : 5 });

经过$skip管道操作符处理后,前五个文档被"过滤"掉。


相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
25天前
|
SQL NoSQL Unix
MongoDB 聚合
10月更文挑战第17天
19 4
|
2月前
|
SQL NoSQL Unix
MongoDB聚合操作总结
这篇文章总结了MongoDB中聚合操作的作用、方法、常见聚合表达式以及聚合管道的概念和常用操作符,以及SQL与MongoDB聚合操作的对应关系。
41 2
MongoDB聚合操作总结
|
25天前
|
SQL NoSQL 数据处理
深入探索MongoDB的聚合操作
【10月更文挑战第13天】
11 0
|
2月前
|
NoSQL MongoDB 数据库
python3操作MongoDB的crud以及聚合案例,代码可直接运行(python经典编程案例)
这篇文章提供了使用Python操作MongoDB数据库进行CRUD(创建、读取、更新、删除)操作的详细代码示例,以及如何执行聚合查询的案例。
32 6
|
2月前
|
SQL NoSQL JavaScript
04 MongoDB各种查询操作 以及聚合操作总结
文章全面总结了MongoDB中的查询操作及聚合操作,包括基本查询、条件筛选、排序以及聚合管道的使用方法和实例。
75 0
|
3月前
|
持续交付 jenkins Devops
WPF与DevOps的完美邂逅:从Jenkins配置到自动化部署,全流程解析持续集成与持续交付的最佳实践
【8月更文挑战第31天】WPF与DevOps的结合开启了软件生命周期管理的新篇章。通过Jenkins等CI/CD工具,实现从代码提交到自动构建、测试及部署的全流程自动化。本文详细介绍了如何配置Jenkins来管理WPF项目的构建任务,确保每次代码提交都能触发自动化流程,提升开发效率和代码质量。这一方法不仅简化了开发流程,还加强了团队协作,是WPF开发者拥抱DevOps文化的理想指南。
82 1
|
3月前
|
NoSQL BI 数据处理
【超实用攻略】MongoDB 聚合框架:从入门到精通,带你解锁数据处理新姿势!
【8月更文挑战第24天】MongoDB是一款以其灵活性和高性能闻名的NoSQL数据库。其强大的聚合框架采用管道式处理,允许用户定义多个数据处理阶段如过滤、分组等。本文通过示例数据库`orders`和`products`,演示如何利用聚合框架计算各产品的总销售额。示例代码展示了使用`$lookup`连接两集合、`$unwind`打平数组及`$group`按产品ID分组并计算总销售额的过程。这突显了聚合框架处理复杂查询的强大能力,是进行数据分析和报表生成的理想选择。
50 3
|
3月前
|
存储 NoSQL JavaScript
MongoDB存储过程实战:聚合框架、脚本、最佳实践,一文全掌握!
【8月更文挑战第24天】MongoDB是一款备受欢迎的文档型NoSQL数据库,以灵活的数据模型和强大功能著称。尽管其存储过程支持不如传统关系型数据库,本文深入探讨了MongoDB在此方面的最佳实践。包括利用聚合框架处理复杂业务逻辑、封装业务逻辑提高复用性、运用JavaScript脚本实现类似存储过程的功能以及考虑集成其他工具提升数据处理能力。通过示例代码展示如何创建订单处理集合并定义验证规则,虽未直接实现存储过程,但有效地演示了如何借助JavaScript脚本处理业务逻辑,为开发者提供更多实用指导。
68 2
|
3月前
|
存储 NoSQL 数据处理
【MongoDB大神级操作】揭秘聚合框架,让你的数据处理能力瞬间飙升,秒变数据界的超级英雄!
【8月更文挑战第24天】MongoDB是一款备受欢迎的非关系型数据库,以其灵活的文档模型和出色的可扩展性著称。其聚合框架尤其亮眼,能高效地对数据库中的数据执行复杂的转换与聚合操作,无需将数据导出到应用端处理,极大提升了数据处理的效率与灵活性。例如,在一个大型电商数据库中,聚合框架能轻松分析出最热卖的商品或特定时段内某类别商品的销售总额。通过一系列管道操作,如$unwind、$group等,可以对数据进行逐步处理并得到最终结果,同时还支持过滤、排序、分页等多种操作,极大地丰富了数据处理的能力,成为进行数据分析、报表生成及复杂业务逻辑实现的强大工具。
73 2
|
3月前
|
持续交付 jenkins C#
“WPF与DevOps深度融合:从Jenkins配置到自动化部署全流程解析,助你实现持续集成与持续交付的无缝衔接”
【8月更文挑战第31天】本文详细介绍如何在Windows Presentation Foundation(WPF)项目中应用DevOps实践,实现自动化部署与持续集成。通过具体代码示例和步骤指导,介绍选择Jenkins作为CI/CD工具,结合Git进行源码管理,配置构建任务、触发器、环境、构建步骤、测试及部署等环节,显著提升开发效率和代码质量。
76 0