系统架构面临的三大挑战,看 Kubernetes 监控如何解决?

本文涉及的产品
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
应用实时监控服务-应用监控,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 随着 Kubernetes 的不断实践落地,我们经常会遇到负载均衡、集群调度、水平扩展等问题。归根到底,这些问题背后都暴露出流量分布不均的问题。那么,我们该如何发现资源使用,解决流量分布不均问题呢?今天,我们就借助三个具体场景聊聊这一问题以及相应的解决方案。

作者|炎寻

审核&校对:白玙

编辑&排版:雯燕


大家好,我是阿里云云原生应用平台的炎寻,很高兴能与大家继续分享 Kubernetes 监控系列公开课。前两期公开课我们讲到了 Vol.1《通过 Kubernetes 监控探索应用架构,发现预期外的流量》Vol.2《如何发现 Kubernetes 中服务和工作负载的异常》


 如何使用 Kubernetes 监控的拓扑来探索应用架构,使用产品采集的监控数据配置告警来发现服务性能问题。今天我们将进行第三讲《使用 Kubernetes 监控发现资源使用,流量分布不均匀的问题》,大家可以钉钉搜索钉群 31588365,加入 Kubernetes 监控答疑群进行交流


随着 Kubernetes 的不断实践落地,我们经常会遇到越来越多问题,诸如负载均衡、集群调度、水平扩展等问题。归根到底,这些问题背后都暴露出流量分布不均的问题。那么,我们该如何发现资源使用,解决流量分布不均问题呢?今天,我们就借助三个具体场景聊聊这一问题以及相应的解决方案。


系统架构面临的挑战一:负载均衡


b8ccd379513243be8c33ea1dce439590.png


通常来说,对于一个业务系统,架构会有很多层,每层包含很多组件,比如服务接入、中间件、存储,我们希望每个组件的负载都是均衡的,这样性能和稳定性都是最高的,但在多语言多通信协议场景下,快速发现以下问题具备一定难度,比如:


  • 应用服务器处理的请求是否均匀?
  • 应用服务器对中间件服务实例的访问流量是否均匀?
  • 数据库各个分库分表实例读写流量是否均匀?


我们在实际工作实践中会遇到的典型场景就是负载不均衡,线上的流量转发策略或者流量转发组件自身有问题,导致应用服务各个实例接收到的请求量不均衡,部分实例处理的流量显著高于其他节点,导致这部分实例的性能相对于其他实例来说显著恶化,那么路由到这部分实例上的请求无法得到及时的响应,造成系统整体的性能和稳定性降低。


00ee0feb12384d5687416f2e4e12ee93.png


除了服务端不均匀场景之外,云上用户大多使用云服务实例,在实践中会出现应用服务各个实例处理的流量均匀,但访问云服务实例的节点出现流量不均匀,导致云服务实例整体性能和稳定性下降。通常在应用运行时整体链路梳理和特定问题节点上下游分析时,会进入该场景。


那么,我们如何快速发现问题、解决问题呢? 针对这一问题,我们可以从服务负载、请求负载这两个方面对客户端、服务端进行问题发现,判断各个组件实例服务负载和对外请求负载是否均衡。


(1)服务端负载


d30ceac421df4d789fb71cf64b1d290e.png


对于服务端负载均衡问题排查,我们需要了解服务详情,对任意特定的 Service,Deployment,DaemonSet,StatefulSet 进行更具针对性的排查。通过 Kubernetes 监控服务详情功能,我们可以看到 Pod 列表部分会列出后端的所有 Pod,在表格中我们列出了每个 Pod 在选择时间段内的请求数聚合值和请求数时序,通过对请求数一列进行排序,我们可以清楚地看到后端的流量是否均匀。

image.gif140afff257a44b15b0e1925fc8fc7249.png


(2)客户端负载


对于客户端负载均衡问题排查,Kubernetes 监控提供集群拓扑功能,对于任意特定的 Service,Deployment,DaemonSet,StatefulSet,我们都可以查看其关联的拓扑,当选定关联关系之后,点击表格化会列出所有与问题实体关联的网络拓扑,表格每一项都是应用服务节点对外请求的拓扑关系,在表格中我们会展示每一对拓扑关系在选择时间段内的请求数聚合值和请求数时序,通过对请求数一列进行排序,可以清楚地看到特定节点作为客户端对特定的服务端访问是否流量均匀。


系统架构面临的挑战二:集群调度


在 Kubernetes 集群部署场景下,将 Pod 分发到某个节点的过程称之为调度,对于每个 Pod 来说,其调度过程包含了“根据过滤条件找候选节点”以及“找最好的节点”两个步骤,“根据过滤条件找候选节点”除了根据 Pod 和 node 的污点,忍受关系来过滤节点,还有一点非常重要的就是根据资源预留的量来过滤,比如节点的 CPU 只有 1 核的预留,那么对于一个请求 2 核的 Pod 来说该节点将被过滤。“找最好的节点”除了根据 Pod 和 node 的亲和性来选择,一般是在过滤出来的节点里面选择最空闲的。


4e6db4c419f44a52870fe63d0922886e.png

基于上面的理论,我们在实践过程中经常会遇到一些问题:


  • 为什么集群资源使用率很低却无法调度 Pod?
  • 为什么部分节点资源使用率显著高于其他节点?
  • 为什么只有部分节点资源无法调度?


我们在实际工作实践中会遇到的典型场景就是资源热点问题,特定节点频繁发生 Pod 调度问题,整个集群资源利用率极低但是无法调度 Pod。如图,我们可以看到 Node1、Node2 已经调度满了 Pod,Node3 没有任何 Pod 调度上去,这个问题对跨 region 容灾高可用,整体的性能都有影响。我们通常在 Pod 调度失败会进入到该场景。


那么,我们该如何处理呢?


b2425df288bc4146a4aa48332bf5b7d8.png


对于 Pod 无法调度的问题排查,我们通常应该关注到下面三个要点:

  • 节点有 Pod 数量调度上限
  • 节点有 CPU 请求调度上限
  • 节点有内存请求调度上限

5557e70baa404d0abe58396505e500f4.png

Kubernetes 监控提供的集群节点列表展示以上三个要点。通过排序去查看各个节点是否均匀来查看资源热点问题。比如,某个节点 CPU 请求率接近 100%,那么就意味着任何对 CPU 有请求的 Pod 都无法调度到该节点上,如果说只有个别节点的 CPU 请求率接近 100%,其他节点都十分空闲,就需要检查一下该节点的资源容量和 Pod 分布,进一步排查问题。


除了节点有资源热点问题之外,容器也有资源热点问题。如图,对于一个多副本服务来说,其容器的资源使用分布也可能有资源热点问题,主要体现在 CPU 和内存使用上,CPU 在容器环境中是可压缩资源,达到上限之后只会限制,不会对容器本身生命周期造成影响,而内存在容器环境中是不可压缩资源,达到上限之后会出现 OOM,由于每个节点运行的时候虽然处理的请求量一致,但是不同请求不同参数导致的 CPU 和内存消耗可能不一样,那么这样会导致部分容器的资源出现热点,对生命周期和自动扩缩容都会造成影响。


针对容器的资源热点问题,通过理论分析,我们需要关注的要点如下:


  • CPU 是可压缩资源
  • 内存是不可压缩资源
  • Requests 用于调度
  • Limits 用于运行时资源限制隔离


d7fd6d90532242fbb8548d76426f0007.png


Kubernetes 监控在服务详情的 Pod 列表展示以上四个要点,支持排序,通过查看各个 Pod 是否均匀来查看资源热点问题,比如某个 Pod CPU 使用/请求率接近 100%,那么就意味着可能触发自动扩缩容,如果说只有个别 Pod 的 CPU 使用/请求率接近 100%,其他节点都十分空闲,就需要检查处理逻辑,进一步排查问题。


系统架构面临的挑战三:单点问题


对于单点问题而言,其本质就是高可用问题。高可用问题解法只有一个,就是冗余,多节点,多 region,多 zone,多机房,越分散越好,越冗余越好。除此之外,在流量增长,组件压力增大的情况下,系统各组件是否可以水平扩展也成为一个重要的议题。


f243220e60304ef699de869e7aae66ac.png


单点问题,应用服务只有最多 1 个节点,当该节点因为网络或者其他问题中断,无法通过重启解决时,系统崩溃,与此同时,因为只有一个节点,当流量增长超过一个节点的处理能力时,系统整体的性能表现会严重恶化,单点问题会影响系统的性能和高可用能力,针对该问题,Kubernetes监控支持查看 Service,Daemonset,StatefulSet,Deployment 的副本数,快速定位单点问题。 


通过上面的介绍我们可以看到 Kubernetes 监控可以从服务端,客户端多视角支持多语言多通信协议场景下的负载均衡问题排查,与此同时容器,节点,服务的资源热点问题排查,最后通过副本数检查和流量分析支持单点问题排查。在后续的迭代过程中,我们会将这些检查点作为场景开关,一键开启之后自动检查,报警。

目前,Kubernetes 监控免费使用中。点击阅读原文,开启 ARMS 即可使用。
Kubernetes 监控答疑钉钉群(群号:31588365)


6941b9b330fe4024854d6f0d1f3d29ea.png


往期推荐:


Vol.1:《通过 Kubernetes 监控探索应用架构,发现预期外的流量》

Vol.2:《如何发现 Kubernetes 中服务和工作负载的异常》



了解更多相关信息,请扫描下方二维码或搜索微信号(AlibabaCloud888)添加云原生小助手!获取更多相关资讯!


024076d321fe420cbbbe15e79bc681eb.png

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
2月前
|
运维 Kubernetes Docker
利用Docker和Kubernetes构建微服务架构
利用Docker和Kubernetes构建微服务架构
|
2月前
|
Kubernetes Cloud Native 持续交付
容器化、Kubernetes与微服务架构的融合
容器化、Kubernetes与微服务架构的融合
49 1
|
2月前
|
存储 负载均衡 监控
如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
在数字化时代,构建高可靠性服务架构至关重要。本文探讨了如何利用Go语言的高效性、并发支持、简洁性和跨平台性等优势,通过合理设计架构、实现负载均衡、构建容错机制、建立监控体系、优化数据存储及实施服务治理等步骤,打造稳定可靠的服务架构。
45 1
|
2月前
|
监控 持续交付 Docker
Docker 容器化部署在微服务架构中的应用有哪些?
Docker 容器化部署在微服务架构中的应用有哪些?
|
2月前
|
监控 持续交付 Docker
Docker容器化部署在微服务架构中的应用
Docker容器化部署在微服务架构中的应用
|
2月前
|
Kubernetes API 调度
【赵渝强老师】Kubernetes的体系架构
本文介绍了Kubernetes的体系架构及其核心组件。Kubernetes采用主从分布式架构,由master主节点和多个node工作节点组成。master节点负责集群管理和调度,运行API Server、scheduler、controller-manager等服务组件;node节点运行kubelet、kube-proxy和Docker容器守护进程,负责实际业务应用的运行。文章还简要介绍了Kubernetes的附加组件及其作用。
|
2月前
|
安全 持续交付 Docker
微服务架构和 Docker 容器化部署的优点是什么?
微服务架构和 Docker 容器化部署的优点是什么?
|
2月前
|
存储 监控 Docker
探索微服务架构下的容器化部署
本文旨在深入探讨微服务架构下容器化部署的关键技术与实践,通过分析Docker容器技术如何促进微服务的灵活部署和高效管理,揭示其在现代软件开发中的重要性。文章将重点讨论容器化技术的优势、面临的挑战以及最佳实践策略,为读者提供一套完整的理论与实践相结合的指导方案。
|
2月前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
2月前
|
JavaScript 持续交付 Docker
解锁新技能:Docker容器化部署在微服务架构中的应用
【10月更文挑战第29天】在数字化转型中,微服务架构因灵活性和可扩展性成为企业首选。Docker容器化技术为微服务的部署和管理带来革命性变化。本文探讨Docker在微服务架构中的应用,包括隔离性、可移植性、扩展性、版本控制等方面,并提供代码示例。
70 1