无需编程,基于微软mssql数据库零代码生成CRUD增删改查RESTful API接口

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介: 通过之前一篇文章 无需编程,基于甲骨文oracle数据库零代码生成CRUD增删改查RESTful API接口 的介绍,引入了FreeMarker模版引擎,通过配置模版实现创建和修改物理表结构SQL语句,并且通过配置oracle数据库SQL模版,基于oracle数据库,零代码实现crud增删改查。本文采用同样的方式,很容易就可以支持微软SQL Server数据库。

无需编程,基于微软mssql数据库零代码生成CRUD增删改查RESTful API接口

回顾

通过之前一篇文章 无需编程,基于甲骨文oracle数据库零代码生成CRUD增删改查RESTful API接口 的介绍,引入了FreeMarker模版引擎,通过配置模版实现创建和修改物理表结构SQL语句,并且通过配置oracle数据库SQL模版,基于oracle数据库,零代码实现crud增删改查。本文采用同样的方式,很容易就可以支持微软SQL Server数据库。

MSSQL简介

SQL Server 是Microsoft 公司推出的关系型数据库管理系统。具有使用方便可伸缩性好与相关软件集成程度高等优点,可从运行Microsoft Windows的电脑和大型多处理器的服务器等多种平台使用。Microsoft SQL Server 是一个全面的数据库平台,使用集成的商业智能 (BI)工具提供了企业级的数据管理。Microsoft SQL Server 数据库引擎为关系型数据和结构化数据提供了更安全可靠的存储功能,使您可以构建和管理用于业务的高可用和高性能的数据应用程序。

UI界面

通过课程对象为例,无需编程,基于MSSQL数据库,通过配置零代码实现CRUD增删改查RESTful API接口和管理UI。

courseMeta
创建课程表

courseData
编辑课程数据

courseList
课程数据列表

DBeaver
通过DBeaver数据库工具查询mssql数据

定义FreeMarker模版

创建表create-table.sql.ftl

CREATE TABLE "${tableName}" (
<#list columnEntityList as columnEntity>
  <#if columnEntity.dataType == "BOOL">
    "${columnEntity.name}" BIT<#if columnEntity.defaultValue??> DEFAULT <#if columnEntity.defaultValue == "true">1<#else>0</#if></#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "INT">
    "${columnEntity.name}" INT<#if columnEntity.autoIncrement == true> IDENTITY(1, 1)</#if><#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "BIGINT">
    "${columnEntity.name}" BIGINT<#if columnEntity.autoIncrement == true> IDENTITY(1, 1)</#if><#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "FLOAT">
    "${columnEntity.name}" FLOAT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "DOUBLE">
    "${columnEntity.name}" DOUBLE<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "DECIMAL">
    "${columnEntity.name}" DECIMAL<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "DATE">
    "${columnEntity.name}" DATE<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "TIME">
    "${columnEntity.name}" TIME<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "DATETIME">
    "${columnEntity.name}" DATETIME<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "TIMESTAMP">
    "${columnEntity.name}" TIMESTAMP<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "CHAR">
    "${columnEntity.name}" CHAR(${columnEntity.length})<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "VARCHAR">
    "${columnEntity.name}" VARCHAR(${columnEntity.length})<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "PASSWORD">
    "${columnEntity.name}" VARCHAR(200)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "ATTACHMENT">
    "${columnEntity.name}" VARCHAR(4000)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "TEXT">
    "${columnEntity.name}" VARCHAR(4000)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "LONGTEXT">
    "${columnEntity.name}" TEXT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "BLOB">
    "${columnEntity.name}" BINARY<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "LONGBLOB">
    "${columnEntity.name}" BINARY<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#else>
    "${columnEntity.name}" VARCHAR(200)<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  </#if>
</#list>
);

<#list columnEntityList as columnEntity>
  <#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY">
    ALTER TABLE "${tableName}" ADD CONSTRAINT "${columnEntity.indexName}" PRIMARY KEY ("${columnEntity.name}");
  </#if>

  <#if columnEntity.indexType?? && columnEntity.indexType == "UNIQUE">
    ALTER TABLE "${tableName}" ADD CONSTRAINT "${columnEntity.indexName}" UNIQUE("${columnEntity.name}");
  </#if>

  <#if columnEntity.indexType?? && (columnEntity.indexType == "INDEX" || columnEntity.indexType == "FULLTEXT")>
    CREATE INDEX "${columnEntity.indexName}" ON "${tableName}" ("${columnEntity.name}");
  </#if>
</#list>

<#if indexEntityList??>
  <#list indexEntityList as indexEntity>
    <#if indexEntity.indexType?? && indexEntity.indexType == "PRIMARY">
      ALTER TABLE "${tableName}" ADD CONSTRAINT "${indexEntity.name}" PRIMARY KEY (<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>);
    </#if>

    <#if indexEntity.indexType?? && indexEntity.indexType == "UNIQUE">
      ALTER TABLE "${tableName}" ADD CONSTRAINT "${indexEntity.name}" UNIQUE(<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>);
    </#if>

    <#if indexEntity.indexType?? && (indexEntity.indexType == "INDEX" || indexEntity.indexType == "FULLTEXT")>
      CREATE INDEX "${indexEntity.name}" ON "${tableName}" (<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>);
    </#if>
  </#list>
</#if>

EXEC sp_addextendedproperty 'MS_Description', N'${caption}', 'SCHEMA', N'dbo','TABLE', N'${tableName}';

<#list columnEntityList as columnEntity>
  EXEC sp_addextendedproperty 'MS_Description', N'${columnEntity.caption}', 'SCHEMA', N'dbo','TABLE', N'${tableName}', 'COLUMN', N'${columnEntity.name}';
</#list>

创建ca_course表

UI点击创建表单之后,后台会转换成对应的SQL脚本,最终创建物理表。

CREATE TABLE "ca_course" (
    "id" BIGINT IDENTITY(1, 1) NOT NULL,
    "name" VARCHAR(200) NOT NULL,
    "classHour" INT,
    "score" FLOAT,
    "teacher" VARCHAR(200),
    "fullTextBody" VARCHAR(4000),
    "createdDate" DATETIME NOT NULL,
    "lastModifiedDate" DATETIME
);
ALTER TABLE "ca_course" ADD CONSTRAINT "primary_key" PRIMARY KEY ("id");
CREATE INDEX "ft_fulltext_body" ON "ca_course" ("fullTextBody");

EXEC sp_addextendedproperty 'MS_Description', N'课程', 'SCHEMA', N'dbo','TABLE', N'ca_course';
EXEC sp_addextendedproperty 'MS_Description', N'编号', 'SCHEMA', N'dbo','TABLE', N'ca_course', 'COLUMN', N'id';
EXEC sp_addextendedproperty 'MS_Description', N'课程名称', 'SCHEMA', N'dbo','TABLE', N'ca_course', 'COLUMN', N'name';
EXEC sp_addextendedproperty 'MS_Description', N'课时', 'SCHEMA', N'dbo','TABLE', N'ca_course', 'COLUMN', N'classHour';
EXEC sp_addextendedproperty 'MS_Description', N'学分', 'SCHEMA', N'dbo','TABLE', N'ca_course', 'COLUMN', N'score';
EXEC sp_addextendedproperty 'MS_Description', N'教师', 'SCHEMA', N'dbo','TABLE', N'ca_course', 'COLUMN', N'teacher';
EXEC sp_addextendedproperty 'MS_Description', N'全文索引', 'SCHEMA', N'dbo','TABLE', N'ca_course', 'COLUMN', N'fullTextBody';
EXEC sp_addextendedproperty 'MS_Description', N'创建时间', 'SCHEMA', N'dbo','TABLE', N'ca_course', 'COLUMN', N'createdDate';
EXEC sp_addextendedproperty 'MS_Description', N'修改时间', 'SCHEMA', N'dbo','TABLE', N'ca_course', 'COLUMN', N'lastModifiedDate';

修改表

freemarker.png
包括表结构和索引的修改,删除等,和创建表原理类似。

application.properties

需要根据需要配置数据库连接驱动,无需重新发布,就可以切换不同的数据库。

#mssql
spring.datasource.url=jdbc:sqlserver://localhost:1433;SelectMethod=cursor;DatabaseName=crudapi
spring.datasource.driverClassName=com.microsoft.sqlserver.jdbc.SQLServerDriver
spring.datasource.username=sa
spring.datasource.password=Mssql1433

小结

本文主要介绍了crudapi支持mssql数据库实现原理,并且以课程对象为例,零代码实现了CRUD增删改查RESTful API,后续介绍更多的数据库,比如Mongodb等。

实现方式 代码量 时间 稳定性
传统开发 1000行左右 2天/人 5个bug左右
crudapi系统 0行 1分钟 基本为0

综上所述,利用crudapi系统可以极大地提高工作效率和节约成本,让数据处理变得更简单!

相关实践学习
使用SQL语句管理索引
本次实验主要介绍如何在RDS-SQLServer数据库中,使用SQL语句管理索引。
SQL Server on Linux入门教程
SQL Server数据库一直只提供Windows下的版本。2016年微软宣布推出可运行在Linux系统下的SQL Server数据库,该版本目前还是早期预览版本。本课程主要介绍SQLServer On Linux的基本知识。 相关的阿里云产品:云数据库RDS&nbsp;SQL Server版 RDS SQL Server不仅拥有高可用架构和任意时间点的数据恢复功能,强力支撑各种企业应用,同时也包含了微软的License费用,减少额外支出。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/sqlserver
目录
相关文章
|
19天前
|
JSON JavaScript 前端开发
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发作为连接用户与数据的桥梁,扮演着至关重要的角色。本文将引导您步入Node.js的奇妙世界,通过实践操作,掌握如何使用这一强大的JavaScript运行时环境构建高效、可扩展的RESTful API。我们将一同探索Express框架的使用,学习如何设计API端点,处理数据请求,并实现身份验证机制,最终部署我们的成果到云服务器上。无论您是初学者还是有一定基础的开发者,这篇文章都将为您打开一扇通往后端开发深层知识的大门。
36 12
|
22天前
|
XML JSON 缓存
深入理解RESTful API设计原则与实践
在现代软件开发中,构建高效、可扩展的应用程序接口(API)是至关重要的。本文旨在探讨RESTful API的核心设计理念,包括其基于HTTP协议的特性,以及如何在实际应用中遵循这些原则来优化API设计。我们将通过具体示例和最佳实践,展示如何创建易于理解、维护且性能优良的RESTful服务,从而提升前后端分离架构下的开发效率和用户体验。
|
23天前
|
JSON 缓存 测试技术
构建高效RESTful API的后端实践指南####
本文将深入探讨如何设计并实现一个高效、可扩展且易于维护的RESTful API。不同于传统的摘要概述,本节将直接以行动指南的形式,列出构建RESTful API时必须遵循的核心原则与最佳实践,旨在为开发者提供一套直接可行的实施框架,快速提升API设计与开发能力。 ####
|
23天前
|
JSON API 开发者
深入理解RESTful API设计原则
在数字化时代,API已成为连接不同软件应用的桥梁。本文旨在探讨RESTful API设计的基本原则和最佳实践,帮助开发者构建高效、可扩展的网络服务接口。通过解析REST架构风格的核心概念,我们将了解如何设计易于理解和使用的API,同时保证其性能和安全性。
|
23天前
|
存储 缓存 API
深入理解RESTful API设计原则
在现代软件开发中,RESTful API已成为前后端分离架构下不可或缺的通信桥梁。本文旨在探讨RESTful API的核心设计原则,包括资源导向、无状态、统一接口、以及可缓存性等,并通过实例解析如何在实际应用中遵循这些原则来构建高效、可维护的API接口。我们将深入分析每个原则背后的设计理念,提供最佳实践指导,帮助开发者优化API设计,提升系统整体性能和用户体验。
19 0
|
12天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
81 15
|
6天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
13天前
|
关系型数据库 MySQL 数据库
数据库数据恢复—MYSQL数据库文件损坏的数据恢复案例
mysql数据库文件ibdata1、MYI、MYD损坏。 故障表现:1、数据库无法进行查询等操作;2、使用mysqlcheck和myisamchk无法修复数据库。
|
17天前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
|
25天前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据
下一篇
DataWorks