Hi,大家好。
我们知道,在计算机中要显示颜色,一般都是用R、G、B三个0-255范围内的整数来描述。
图片
这一点,即便你不是从事前端、客户端这些与界面交互相关的开发工作,也应该知道。
也就是说,你现在在屏幕上看到的任何一个像素点的颜色,都可以用RGB三个整数值来表示。
那就有一个有趣的问题:如果让程序自动来填写每一个像素点,最后会是一副什么画呢?
最近我在知乎就看到了这么一个有趣的话题,看完真的让人称奇,独乐乐不如众乐乐,分享给大家。
事情是这么一回事:
国外有个大佬在StackExchange
上发起了一个叫做 Tweetable Mathematical Art
的比赛。
参赛者需要用C++
编写代表三原色的RD、GR、BL三个函数,每个函数都不能超过 140 个字符。每个函数都会接到 i 和 j 两个整型参数(0 ≤ i, j ≤ 1023),然后需要返回一个 0 到 255 之间的整数,表示位于 (i, j) 的像素点的颜色值。
举个例子,如果 RD(0, 0) 和 GR(0, 0) 返回的都是 0 ,但 BL(0, 0) 返回的是 255 ,那么图像的最左上角那个像素就是蓝色。
参赛者编写的代码会被插进下面这段程序当中(我做了一些细微的改动),最终会生成一个大小为 1024×1024 的图片。
// NOTE: compile with g++ filename.cpp -std=c++11 #include <iostream> #include <cmath> #include <cstdlib> #define DIM 1024 #define DM1 (DIM-1) #define _sq(x) ((x)*(x)) // square #define _cb(x) abs((x)*(x)*(x)) // absolute value of cube #define _cr(x) (unsigned char)(pow((x),1.0/3.0)) // cube root unsigned char GR(int,int); unsigned char BL(int,int); unsigned char RD(int i,int j){ // YOUR CODE HERE } unsigned char GR(int i,int j){ // YOUR CODE HERE } unsigned char BL(int i,int j){ // YOUR CODE HERE } void pixel_write(int,int); FILE *fp; int main(){ fp = fopen("MathPic.ppm","wb"); fprintf(fp, "P6\n%d %d\n255\n", DIM, DIM); for(int j=0;j<DIM;j++) for(int i=0;i<DIM;i++) pixel_write(i,j); fclose(fp); return 0; } void pixel_write(int i, int j){ static unsigned char color[3]; color[0] = RD(i,j)&255; color[1] = GR(i,j)&255; color[2] = BL(i,j)&255; fwrite(color, 1, 3, fp); }
我选了一些自己比较喜欢的作品,放在下面和大家分享。首先是一个来自 Martin Büttner 的作品:
图片
它的代码如下:
unsigned char RD(int i,int j){ return (char)(_sq(cos(atan2(j-512,i-512)/2))*255); } unsigned char GR(int i,int j){ return (char)(_sq(cos(atan2(j-512,i-512)/2-2*acos(-1)/3))*255); } unsigned char BL(int i,int j){ return (char)(_sq(cos(atan2(j-512,i-512)/2+2*acos(-1)/3))*255); }
同样是来自 Martin Büttner 的作品:
图片
这是目前暂时排名第一的作品。它的代码如下:
unsigned char RD(int i,int j){ #define r(n)(rand()%n) static char c[1024][1024]; return!c[i][j]?c[i][j]=!r(999)?r(256):RD((i+r(2))%1024,(j+r(2))%1024):c[i][j]; } unsigned char GR(int i,int j){ static char c[1024][1024]; return!c[i][j]?c[i][j]=!r(999)?r(256):GR((i+r(2))%1024,(j+r(2))%1024):c[i][j]; } unsigned char BL(int i,int j){ static char c[1024][1024]; return!c[i][j]?c[i][j]=!r(999)?r(256):BL((i+r(2))%1024,(j+r(2))%1024):c[i][j]; }
下面这张图片仍然出自 Martin Büttner 之手:
图片
难以想象, Mandelbrot 分形图形居然可以只用这么一点代码画出:
unsigned char RD(int i,int j){ float x=0,y=0;int k;for(k=0;k++<256;){float a=x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y>4)break;} return log(k)*47; } unsigned char GR(int i,int j){ float x=0,y=0;int k;for(k=0;k++<256;){float a=x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y>4)break;} return log(k)*47; } unsigned char BL(int i,int j){ float x=0,y=0;int k;for(k=0;k++<256;){float a=x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y>4)break;} return 128-log(k)*23; }
Manuel Kasten 也制作了一个 Mandelbrot 集的图片,与刚才不同的是,该图描绘的是 Mandelbrot 集在某处局部放大后的结果:
图片
它的代码如下:
unsigned char RD(int i,int j){ double a=0,b=0,c,d,n=0; while((c=a*a)+(d=b*b)<4&&n++<880) {b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;} return 255*pow((n-80)/800,3.); } unsigned char GR(int i,int j){ double a=0,b=0,c,d,n=0; while((c=a*a)+(d=b*b)<4&&n++<880) {b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;} return 255*pow((n-80)/800,.7); } unsigned char BL(int i,int j){ double a=0,b=0,c,d,n=0; while((c=a*a)+(d=b*b)<4&&n++<880) {b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;} return 255*pow((n-80)/800,.5); }
这是 Manuel Kasten 的另一作品:
图片
生成这张图片的代码很有意思:函数依靠 static 变量来控制绘画的进程,完全没有用到 i 和 j 这两个参数!
unsigned char RD(int i,int j){ static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l; } unsigned char GR(int i,int j){ static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l; } unsigned char BL(int i,int j){ static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l; }
这是来自 githubphagocyte 的作品:
图片
它的代码如下:
unsigned char RD(int i,int j){ float s=3./(j+99); float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s; return (int((i+DIM)*s+y)%2+int((DIM*2-i)*s+y)%2)*127; } unsigned char GR(int i,int j){ float s=3./(j+99); float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s; return (int(5*((i+DIM)*s+y))%2+int(5*((DIM*2-i)*s+y))%2)*127; } unsigned char BL(int i,int j){ float s=3./(j+99); float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s; return (int(29*((i+DIM)*s+y))%2+int(29*((DIM*2-i)*s+y))%2)*127; }
这是来自 githubphagocyte 的另一个作品:
图片
这是一张使用 diffusion-limited aggregation 模型得到的图片,程序运行起来要耗费不少时间。代码很有意思:巧妙地利用宏定义,打破了函数与函数之间的界限,三段代码的字数限制便能合在一起使用了。
unsigned char RD(int i,int j){ #define D DIM #define M m[(x+D+(d==0)-(d==2))%D][(y+D+(d==1)-(d==3))%D] #define R rand()%D #define B m[x][y] return(i+j)?256-(BL(i,j))/2:0; } unsigned char GR(int i,int j){ #define A static int m[D][D],e,x,y,d,c[4],f,n;if(i+j<1){for(d=D*D;d;d--){m[d%D][d/D]=d%6?0:rand()%2000?1:255;}for(n=1 return RD(i,j); } unsigned char BL(int i,int j){ A;n;n++){x=R;y=R;if(B==1){f=1;for(d=0;d<4;d++){c[d]=M;f=f<c[d]?c[d]:f;}if(f>2){B=f-1;}else{++e%=4;d=e;if(!c[e]){B=0;M=1;}}}}}return m[i][j]; }
最后这张图来自 Eric Tressler:
图片
这是由 logistic 映射得到的 Feigenbaum 分岔图。和刚才一样,对应的代码也巧妙地利用了宏定义来节省字符:
unsigned char RD(int i,int j){ #define A float a=0,b,k,r,x #define B int e,o #define C(x) x>255?255:x #define R return #define D DIM R BL(i,j)*(D-i)/D; } unsigned char GR(int i,int j){ #define E DM1 #define F static float #define G for( #define H r=a*1.6/D+2.4;x=1.0001*b/D R BL(i,j)*(D-j/2)/D; } unsigned char BL(int i,int j){ F c[D][D];if(i+j<1){A;B;G;a<D;a+=0.1){G b=0;b<D;b++){H;G k=0;k<D;k++){x=r*x*(1-x);if(k>D/2){e=a;o=(E*x);c[e][o]+=0.01;}}}}}R C(c[j][i])*i/D; }
怎么样,短短几行代码,就能画出如此绚烂的图像,你有没有什么脑洞大开的想法,可以复制上面的代码来试一试啊!