一行代码干掉 debug 和 print,助力算法学习

简介: 在写算法的时候,总是要每行每个变量一个个的 debug,有时候还要多写几个 print,一道算法题要花好长时间才能理解。pysnooper 模块可以把在运行中变量值都给打印出来。

在写算法的时候,总是要每行每个变量一个个的 debug,有时候还要多写几个 print,一道算法题要花好长时间才能理解。pysnooper 模块可以把在运行中变量值都给打印出来。


模块安装

pip3 install pysnooper


简单例子

下面是道简单的力扣算法题作为一个简单的例子


import pysnooper
@pysnooper.snoop()
def longestCommonPrefix(strs):
    res = ''
    for i in zip(*strs):
        print(i)
        if len(set(i)) == 1:
            res += i[0]
        else
            break
    return res
if __name__ == 'main':
    longestCommonPrefix(["flower","flow","flight"])


结果:

3:38:25.863579 call         4 def longestCommonPrefix(strs):
23:38:25.864474 line         5     res = ''
New var:....... res = ''
23:38:25.864474 line         6     for i in zip(*strs):
New var:....... i = ('f', 'f', 'f')
23:38:25.865479 line         7         print(i)
('f', 'f', 'f')
23:38:25.866471 line         8         if len(set(i))==1:
23:38:25.866471 line         9             res+=i[0]
Modified var:.. res = 'f'
23:38:25.866471 line         6     for i in zip(*strs):
Modified var:.. i = ('l', 'l', 'l')
23:38:25.866471 line         7         print(i)
('l', 'l', 'l')
23:38:25.867468 line         8         if len(set(i))==1:
23:38:25.867468 line         9             res+=i[0]
Modified var:.. res = 'fl'
23:38:25.868476 line         6     for i in zip(*strs):
Modified var:.. i = ('o', 'o', 'i')
23:38:25.868476 line         7         print(i)
('o', 'o', 'i')
23:38:25.869463 line         8         if len(set(i))==1:
23:38:25.869463 line        11             break
23:38:25.869463 line        12     return res
23:38:25.869463 return      12     return res
Return value:.. 'fl'
Elapsed time: 00:00:00.008201


我们可以看到 pysnooper 把整个执行程序都记录了下来,其中包括行号, 行内容,变量的结果等情况,我们很容易的就看懂了这个算法的真实情况。并且不需要再使用 debug 和 print 调试代码。很是省时省力,只需要在方法上面加一行 @pysnooper.snoop()。


复杂使用


pysnooper 包含了多个参数,一起来看看吧


output

output 默认输出到控制台,设置后输出到文件,在服务器中运行的时候,特定的时间出现代码问题就很容易定位错误了,不然容易抓瞎。小编在实际中已经被这种问题困扰了好几次,每次都掉好多头发。


@pysnooper.snoop('D:\pysnooper.log')
def longestCommonPrefix(strs):


示例结果:

59.png

watch 和 watch_explode

watch 用来设置跟踪的非局部变量,watch_explode 表示设置的变量都不监控,只监控没设置的变量,正好和 watch 相反。

index = 1
@pysnooper.snoop(watch=('index'))
def longestCommonPrefix(strs):


示例结果

没有加 watch 参数


Starting var:.. strs = ['flower', 'flow', 'flight']
00:12:33.715367 call         5 def longestCommonPrefix(strs):
00:12:33.717324 line         7     res = ''
New var:....... res = ''


加了watch 参数,就会有一个 Starting var:.. index


Starting var:.. strs = ['flower', 'flow', 'flight']
Starting var:.. index = 1
00:10:35.151036 call         5 def longestCommonPrefix(strs):
00:10:35.151288 line         7     res = ''
New var:....... res = ''


depth

depth 监控函数的深度


@pysnooper.snoop(depth=2)
def longestCommonPrefix(strs):
    otherMethod()


示例结果


Starting var:.. strs = ['flower', 'flow', 'flight']
00:20:54.059803 call         5 def longestCommonPrefix(strs):
00:20:54.059803 line         6     otherMethod()
    00:20:54.060785 call        16 def otherMethod():        
    00:20:54.060785 line        17     x = 1
    New var:....... x = 1
    00:20:54.060785 line        18     x = x + 1
    Modified var:.. x = 2
    00:20:54.060785 return      18     x = x + 1
    Return value:.. None
00:20:54.061782 line         7     res = ''

监控的结果显示,当监控到调用的函数的时候,记录上会加上缩进,并将它的局部变量和返回值打印处理。


prefix

prefix 输出内容的前缀


@pysnooper.snoop(prefix='-------------')
def longestCommonPrefix(strs):


示例结果

-------------Starting var:.. strs = ['flower', 'flow', 'flight']
-------------00:39:13.986741 call         5 def longestCommonPrefix(strs):
-------------00:39:13.987218 line         6     res = ''


relative_time

relative_time 代码运行的时间


@pysnooper.snoop(relative_time=True)
def longestCommonPrefix(strs):


示例结果

Starting var:.. strs = ['flower', 'flow', 'flight']
00:00:00.000000 call         5 def longestCommonPrefix(strs):
00:00:00.001998 line         6     res = ''
New var:....... res = ''
00:00:00.001998 line         7     for i in zip(*strs):


max_variable_length


max_variable_length 输出的变量和异常的最大长度,默认是 100 个字符,超过 100 个字符就会被截断,可以设置为 max_variable_length=None 不截断输出

@pysnooper.snoop(max_variable_length=5)
def longestCommonPrefix(strs):


示例结果

Starting var:.. strs = [...]
00:56:44.343639 call         5 def longestCommonPrefix(strs):
00:56:44.344696 line         6     res = ''
New var:....... res = ''
00:56:44.344696 line         7     for i in zip(*strs):      
New var:....... i = (...)


总结

本文介绍了怎么使用 pysnooper 工具,pysnooper 不仅可以少一些 debug 和 print,更能帮助理解算法题。

目录
相关文章
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
187 65
|
9天前
|
机器学习/深度学习 存储 算法
经典算法代码
这段代码展示了多个经典算法,包括:穷举法解决“百钱买百鸡”问题;递推法计算“猴子吃桃”问题;迭代法求解斐波那契数列及折纸高度超越珠峰的问题。同时,还提供了希尔排序算法实现及披萨票务订购系统和汉诺塔问题的链表存储解决方案。每部分通过具体案例解释了算法的应用场景与实现方法。
17 3
|
1月前
|
机器学习/深度学习 人工智能 资源调度
【博士每天一篇文献-算法】连续学习算法之HAT: Overcoming catastrophic forgetting with hard attention to the task
本文介绍了一种名为Hard Attention to the Task (HAT)的连续学习算法,通过学习几乎二值的注意力向量来克服灾难性遗忘问题,同时不影响当前任务的学习,并通过实验验证了其在减少遗忘方面的有效性。
40 12
|
1月前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
43 2
|
1月前
|
算法 Java
掌握算法学习之字符串经典用法
文章总结了字符串在算法领域的经典用法,特别是通过双指针法来实现字符串的反转操作,并提供了LeetCode上相关题目的Java代码实现,强调了掌握这些技巧对于提升算法思维的重要性。
|
1月前
|
算法 NoSQL 中间件
go语言后端开发学习(六) ——基于雪花算法生成用户ID
本文介绍了分布式ID生成中的Snowflake(雪花)算法。为解决用户ID安全性与唯一性问题,Snowflake算法生成的ID具备全局唯一性、递增性、高可用性和高性能性等特点。64位ID由符号位(固定为0)、41位时间戳、10位标识位(含数据中心与机器ID)及12位序列号组成。面对ID重复风险,可通过预分配、动态或统一分配标识位解决。Go语言实现示例展示了如何使用第三方包`sonyflake`生成ID,确保不同节点产生的ID始终唯一。
go语言后端开发学习(六) ——基于雪花算法生成用户ID
|
1月前
|
搜索推荐 算法 Java
|
1月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】连续学习算法之HNet:Continual learning with hypernetworks
本文提出了一种基于任务条件超网络(Hypernetworks)的持续学习模型,通过超网络生成目标网络权重并结合正则化技术减少灾难性遗忘,实现有效的任务顺序学习与长期记忆保持。
29 4
|
1月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】连续学习算法之RWalk:Riemannian Walk for Incremental Learning Understanding
RWalk算法是一种增量学习框架,通过结合EWC++和修改版的Path Integral算法,并采用不同的采样策略存储先前任务的代表性子集,以量化和平衡遗忘和固执,实现在学习新任务的同时保留旧任务的知识。
68 3
|
1月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-综述】基于脑启发的连续学习算法有哪些?附思维导图
这篇博客文章总结了连续学习的分类,包括经典方法(重放、正则化和稀疏化方法)和脑启发方法(突触启发、双系统启发、睡眠启发和模块化启发方法),并讨论了它们在解决灾难性遗忘问题上的优势和局限性。
24 2