【深度学习之美】人工“碳”索意犹尽,智能“硅”来未可知(入门系列之二)

简介: 现在的人工智能,大致就是用“硅基大脑”模拟或重现“碳基大脑的过程”。那么,在未来会不会出现“碳硅合一”的大脑或者全面超越人脑的“硅基大脑”呢?专家们的回答是“会的”。而由深度学习引领的人工智能,正在开启这样的时代。

系列文章:

一入侯门“深”似海,深度学习深几许(入门系列之一)


在前面的小节中,我们仅仅泛泛而谈了机器学习、深度学习等概念,在这一小节,我们将给出它的更加准确的形式化描述。

我们经常听到人工智能如何如何?深度学习怎样怎样?那么它们之间有什么关系呢?在本小节,我们首先从宏观上谈谈人工智能的“江湖定位”和深度学习的归属。然后再在微观上聊聊机器学习的数学本质是什么?以及我们为什么要用神经网络?

2.1 人工智能的“江湖定位”


宏观上来看, 人类科学和技术的发展,大致都遵循着这样的规律:现象观察、理论提取和人工模拟(或重现)。 人类“观察大脑”的历史由来已久,但由于对大脑缺乏“深入认识”,常常“绞尽脑汁”,也难以“重现大脑”。

直到上个世纪40年代以后,脑科学、神经科学、心理学及计算机科学等众多学科,取得了一系列重要进展,使得人们对大脑的认识相对“深入”,从而为科研人员从“观察大脑”到“重现大脑”搭起了桥梁,哪怕这个桥梁到现在还仅仅是个并不坚固的浮桥。

brainTocpu

图2-1 人工智能的本质

而所谓的“重现大脑”,在某种程度上,就是目前的研究热点——人工智能。简单来讲,人工智能就是为机器赋予人类的智能。由于目前的机器核心部件是由晶体硅构成,所以可称之为“硅基大脑”。而人类的大脑主要由碳水化合物构成,因此可称之为“碳基大脑”。

那么, 现在的人工智能,通俗来讲,大致就是用“硅基大脑”模拟或重现“碳基大脑”。 那么,在未来会不会出现“碳硅合一”的大脑或者全面超越人脑的“硅基大脑”呢?

有人就认为,在很大程度上,这个答案可能是“会的”!比如说,未来预言大师雷·库兹韦尔(Ray Kurzweil)就预测,到2045年,人类的“奇点”时刻就会临近[1] 。这里的“奇点”是指,人类与其他物种(物体)的相互融合,更确切来说,是硅基智能与碳基智能兼容的那个奇妙时刻。

2.2 深度学习的归属


在当下,虽然深度学习领跑人工智能。但事实上,人工智能研究领域很广,包括机器学习、计算机视觉、专家系统、规划与推理、语音识别、自然语音处理和机器人等。而机器学习又包括深度学习、监督学习、无监督学习等。简单来讲,机器学习是实现人工智能的一种方法,而深度学习仅仅是实现机器学习的一种技术而已(如图2-2所示)。

_

图2-2 深度学习的“江湖地位”

需要说明的是,对人工智能做任何形式的划分,都可能是有缺陷的。在图2中,人工智能的各类技术分支,彼此泾渭分明,但实际上,它们之间却可能阡陌纵横,比如说深度学习是无监督的。语音识别可以用深度学习的方法来完成。再比如说,图像识别、机器视觉更是当前深度学习的拿手好戏。

一言蔽之, 人工智能的分支并不是一个有序的树,而是一个彼此缠绕的灌木丛。 有时候,一个分藤蔓比另一个分藤蔓生长得快,并且处于显要地位,那么它就是当时的研究热点。深度学习的前生——神经网络的发展,就是这样的几起几落。当下,深度学习如日中天,但会不会也有“虎落平阳被犬欺”的一天呢?从事物的发展规律来看,这一天肯定会到来!

在图3-2中,既然我们把深度学习和传统的监督学习和无监督学习单列出来,自然是有一定道理的。这就是因为,深度学习是高度数据依赖型的算法,它的性能通常随着数据量的增加而不断增强,也就是说它的可扩展性(Scalability)显著优于传统的机器学习算法(如图2-3所示)。

deepVSolderalg

图2-3 深度学习和传统学习算法的区别

但如果训练数据比较少,深度学习的性能并不见得就比传统机器学习好。其潜在的原因在于,作为复杂系统代表的深度学习算法,只有数据量足够多,才能通过训练,在深度神经网络中,“恰如其分”地将把蕴含于数据之中的复杂模式表征出来。

不论机器学习,还是它的特例深度学习,在大致上,都存在两个层面的分析(如图2-4所示):

big_data_future

图2-4 机器学习的两层作用

(1)面向过去(对收集到的历史数据,用作训练),发现潜藏在数据之下的模式,我们称之为描述性分析(Descriptive Analysis);

(2)面向未来,基于已经构建的模型,对于新输入数据对象实施预测,我们称之为预测性分析(Predictive Analysis)。

前者主要使用了“归纳”,而后者更侧重于“演绎”。对历史对象的归纳,可以让人们获得新洞察、新知识,而对新对象实施演绎和预测,可以使机器更加智能,或者说让机器的某些性能得以提高。二者相辅相成,均不可或缺。

在前面的部分,我们给予机器学习的概念性描述,下面我们给出机器学习的形式化定义。

2.3.机器学习的形式化定义


在《未来简史》一书中[2],尤瓦尔•赫拉利说,根据数据主义的观点,人工智能实际上就是找到一种高效的“电子算法”,用以代替或在某项指标上超越人类的“生物算法”。那么,任何一个“电子算法”都要实现一定的功能(Function),才有意义。

在计算机术语中,中文将“Function”翻译成“函数”,这个多少有点扯淡,因为它的翻译并没有达到“信达雅”的标准,除了给我们留下一个抽象的概念之外,什么也没有剩下来。但这一称呼已被广为接受,我们也只能“约定俗成”地把“功能”叫做“函数”了。

根据台湾大学李宏毅博士的说法,所谓机器学习,在形式上,可近似等同于在数据对象中,通过统计或推理的方法,寻找一个适用特定输入和预期输出功能函数(如图2-5所示)。习惯上,我们把输入变量写作大写的X ,而把输出变量写作大写的Y 。那么所谓的机器学习,在形式上,就是完成如下变换:Y= f(X) 。

Machine_learning

图2-5 机器学习近似等同于找一个好用的函数

在这样的函数中,针对语音识别功能,如果输入一个音频信号X,那么这个函数Y就能输出诸如“你好”,“How are you?”等这类识别信息。

针对图片识别功能,如果输入的是一个图片X,在这个函数Y的加工下,就能输出(或称识别出)一个猫或狗的判定。

针对下棋博弈功能,如果输入的是一个围棋的棋谱局势(比如AlphaGO)X,那么Y能输出这个围棋的下一步“最佳”走法。

类似地,对于具备智能交互功能的系统(比如微软的小冰),当我们给这个函数X输入诸如“How are you?”,那么Y就能输出诸如“I am fine,thank you?”等智能的回应。

每个具体的输入,都是一个实例(instance),它通常由特征向量(feature vector)构成。在这里,所有特征向量存在的空间称为特征空间(feature space),特征空间的每一个维度,对应于实例的一个特征。

但问题来了,这样“好用的”函数并不那么好找。当输入一个猫的图像后,这个函数并不一定就能输出它就是一只猫,可能它会错误地输出为一条狗或一条蛇。

这样一来,我们就需要构建一个评估体系,来辨别函数的好坏(Goodness)。当然,这中间自然需要训练数据(training data)来“培养”函数的好品质(如图6所示)。在第一章中,我们提到,学习的核心就是性能改善,在图6中,通过训练数据,我们把f1改善为f2的样子,性能(判定的准确度)得以改善了,这就是学习!很自然,这个学习过程如果是在机器上完成的,那就是“机器学习”了。

Asetoffunction
图2-6 机器学习的三步走

具体说来,机器学习要想做得好,需要走好三大步:
(1) 如何找一系列函数来实现预期的功能,这是建模问题。
(2) 如何找出一组合理的评价标准,来评估函数的好坏,这是评价问题。
(3) 如何快速找到性能最佳的函数,这是优化问题(比如说,机器学习中梯度下降法干的就是这个活)。

2.4 为什么要用神经网络?


我们知道,深度学习的概念源于人工神经网络的研究。含多隐层的多层感知机就是一种深度学习结构。所以说到深度学习,就不能不提神经网络。

那么什么是神经网络呢?有关神经网络的定义有很多。这里我们给出芬兰计算机科学家Teuvo Kohonen的定义(这老爷子以提出“自组织神经网络”而名扬人工智能领域):“神经网络,是一种由具有自适应性的简单单元构成的广泛并行互联的网络,它的组织结构能够模拟生物神经系统对真实世界所作出的交互反应。”

在机器学习中,我们常常提到“神经网络”,实际上是指“神经网络学习”。学习是大事,不可忘记!
那为什么我们要用神经网络学习呢?这个原因说起来,有点“情非得已”。
我们知道,在人工智能领域,有两大主流门派。第一个门派是符号主义。符号主义的理念是,知识是信息的一种表达形式,人工智能的核心任务,就是处理好知识表示、知识推理和知识运用。这个门派核心方法论是,自顶向下设计规则,然后通过各种推理,逐步解决问题。很多人工智能的先驱(比如CMU的赫伯特•西蒙)和逻辑学家,很喜欢这种方法。但这个门派的发展,目前看来并不太好。未来会不会“峰回路转”,现在还不好说。

还有一个门派,就是试图编写一个通用模型,然后通过数据训练,不断改善模型中的参数,直到输出的结果符合预期,这个门派就是连接主义。连接主义认为,人的思维就是某些神经元的组合。因此,可以在网络层次上模拟人的认知功能,用人脑的并行处理模式,来表征认知过程。这种受神经科学的启发的网络,被称之人工神经网络(Artificial Neural Network,简称ANN)。目前,这个网络的升级版,就是目前非常流行的深度学习。

前面我们提到,机器学习在本质就是寻找一个好用的函数。而人工神经网络最“牛逼”的地方在于,它可以在理论上证明:只需一个包含足够多神经元的隐藏层,多层前馈网络能以任意精度逼近任意复杂度的连续函数[4]。这个定理也被称之为通用近似定理(Universal Approximation Theorem)。这里的“Universal”,也有人将其翻译成“万能的”,由此可见,这个定理的能量有多大。换句话说,神经网络可在理论上解决任何问题,这就是目前深度学习能够“牛逼哄哄”最底层的逻辑(当然,大数据+大计算也功不可没,后面还会继续讨论)。

2.5 小结


在本小节中,我们首先谈了谈人工智能的“江湖定位”,然后指出深度学习仅仅是人工智能研究的很小的一个分支,接着我们给出了机器学习的形式化定义。最后我们回答了为什么人工神经网络能“风起云涌”,简单来说,在理论上可以证明,它能以任意精度逼近任意形式的连续函数,而机器学习的本质,不就是要找到一个好用的函数嘛?

在下小节,我们将深度解读什么是激活函数,什么是卷积?(很多教科书真是越讲越糊涂,希望你看到下一小节,能有所收获)

2.6 请你思考


学完前面的知识,请你思考如下问题(掌握思辨能力,好像比知识本身更重要):

(1)你认可库兹韦尔“到2045年人类的奇点时刻就会临近”的观点吗?为什么?库兹韦尔的预测,属于科学的范畴吗?(提示:可以从波普尔的科学评判的标准——是否具备可证伪性分来析。)

(2)深度学习的性能,高度依赖性于训练数据量的大小?这个特性是好还是坏?(提示:在《圣经》中有七宗原罪,其中一宗罪就是暴食,而原罪就是“deadly sin”,即死罪。目前,深度学习贪吃数据和能量,能得以改善吗?)

写下你的心得体会,祝你每天都有进步!

【参考文献】

[1] (美) 雷·库兹韦尔, 李庆诚等译. 奇点临近.机械工业出版社.2012.12
2尤瓦尔·赫拉利,未来简史. 出版社:中信出版社.2017.1
[3] 李航.统计学习方法.清华大学出版社.2012.3
[4] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural networks, 1989, 2(5): 359-366.

文章作者:张玉宏(著有《品味大数据》,本文节选自《深度学习之美》(最通俗易懂的深度学习入门)2018年6月出版)

审校:我是主题曲哥哥。

推荐阅读

一入侯门“深”似海,深度学习深几许(深度学习入门系列之一)
人工“碳”索意犹尽,智能“硅”来未可知(深度学习入门系列之二)
神经网络不胜语, M-P模型似可寻(深度学习入门系列之三)
“机器学习”三重门,“中庸之道”趋若人(深度学习入门系列之四)
Hello World感知机,懂你我心才安息(深度学习入门系列之五)
损失函数减肥用,神经网络调权重(深度学习入门系列之六)
山重水复疑无路,最快下降问梯度(深度学习入门系列之七)
BP算法双向传,链式求导最缠绵(深度学习入门系列之八)
全面连接困何处,卷积网络见解深(深度学习入门系列之九)
卷地风来忽吹散,积得飘零美如画(深度学习入门系列之十)
局部连接来减参,权值共享肩并肩(深度学习入门系列之十一)
激活引入非线性,池化预防过拟合(深度学习入门系列之十二)
循环递归RNN,序列建模套路深(深度学习入门系列之十三)
LSTM长短记,长序依赖可追忆(深度学习入门系列之十四)

##(未完待续)

相关文章
|
8天前
|
机器学习/深度学习 监控 算法
深度学习赋能智能监控:图像识别技术的革新与应用
【4月更文挑战第8天】 随着人工智能技术的飞速发展,深度学习在图像处理领域取得了突破性进展。特别是在智能监控系统中,基于深度学习的图像识别技术已成为提升安全和效率的关键工具。本文将探讨深度学习技术如何革新传统监控体系,增强其对复杂场景的理解能力,以及在实际部署中面临的挑战和解决方案。通过分析最新的研究成果和应用案例,我们揭示了深度学习在智能监控领域的潜力及其对未来社会发展的影响。
17 2
|
26天前
|
机器学习/深度学习 边缘计算 监控
基于深度学习的图像识别技术在智能监控领域的应用
【2月更文挑战第30天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域进步的关键力量。特别是在图像识别任务中,深度神经网络通过模仿人类大脑处理信息的方式,显著提升了对复杂场景的理解能力。本文旨在探讨基于深度学习的图像识别技术在智能监控系统中的应用,重点分析了卷积神经网络(CNN)的结构优化、训练策略以及在实际视频流分析中的效能表现。同时,讨论了该技术在实时监控数据处理、异常行为检测和多目标跟踪等方面的创新应用,并对未来发展趋势进行展望。
|
1月前
|
机器学习/深度学习 监控 算法
基于深度学习的图像识别技术在智能监控中的应用
【2月更文挑战第23天】 随着人工智能技术的迅猛发展,尤其是深度学习在图像处理领域的突破,基于深度学习的图像识别技术已经被广泛应用于智能监控系统中。本文将探讨深度学习技术如何提升监控系统的智能化水平,包括实时目标检测、异常行为识别以及人脸识别等功能。同时,文章也将分析当前所面临的挑战和潜在的解决方案,为未来智能监控系统的发展提供参考。
|
7天前
|
机器学习/深度学习 监控 安全
智能化视野下的守卫者:基于深度学习的图像识别技术在智能监控领域的革新应用
【4月更文挑战第9天】 随着人工智能技术的飞速发展,深度学习已经成为了推动计算机视觉进步的重要力量。尤其在智能监控领域,基于深度学习的图像识别技术正逐步转变着传统监控系统的功能与效率。本文旨在探讨深度学习技术如何赋能智能监控,提高对场景理解的准确性,增强异常行为检测的能力,并讨论其在实际部署中所面临的挑战和解决方案。通过深入分析,我们揭示了深度学习在智能监控中的应用不仅优化了安全防范体系,也为城市管理和公共安全提供了有力的技术支持。
|
24天前
|
机器学习/深度学习 数据采集 监控
基于深度学习的图像识别技术在智能监控系统中的应用
随着人工智能技术的飞速发展,深度学习作为其核心分支之一,在图像处理和分析领域取得了显著成就。本文将探讨一种基于深度学习的图像识别技术,并分析其在智能监控系统中的应用。该技术通过构建复杂的神经网络模型,实现了对监控视频中异常行为的准确识别与实时反应。实验结果表明,与传统算法相比,该方法在准确率和处理速度上都有明显提升,有效增强了监控系统的智能化水平。
16 3
|
2月前
|
机器学习/深度学习 存储 缓存
深度学习与Apollo自动驾驶:创造智能驾驶的未来
深度学习与Apollo自动驾驶:创造智能驾驶的未来
|
9天前
|
机器学习/深度学习 人工智能 监控
深度学习赋能智能监控:图像识别技术的革新与应用
【4月更文挑战第7天】 随着人工智能的迅猛发展,深度学习技术在图像处理领域已经取得了突破性的进展。特别是在智能监控系统中,基于深度学习的图像识别技术正逐渐取代传统的模式识别方法,为视频监控带来了革命性的变化。本文旨在探讨深度学习技术在智能监控领域的具体应用,分析其优势和面临的挑战,以及未来的发展趋势。通过深入剖析,我们了解到深度学习不仅提高了图像识别的准确性和效率,还拓展了智能监控系统的功能范围,使其在安全、交通管理、环境监测等多个方面发挥了巨大作用。
|
9天前
|
机器学习/深度学习 监控 安全
深度学习赋能智能监控:图像识别技术的革新与应用
【4月更文挑战第7天】 在现代智能监控系统中,基于深度学习的图像识别技术已成为核心推动力,其在实时监控、事件检测和行为分析等方面展现出了前所未有的能力。本文旨在探讨深度学习算法如何增强智能监控系统的效能,以及这些技术在实际部署中所面临的挑战与解决策略。我们将详细分析卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型在处理视频数据时的优势,并展示其在人群计数、异常行为检测和面部识别等智能监控任务中的应用案例。最后,本文将讨论在大规模部署深度学习模型时需要考虑的数据隐私和模型透明度问题。
11 1
|
11天前
|
机器学习/深度学习 运维 监控
深度视野:深度学习技术在智能监控系统中的革新应用
【4月更文挑战第5天】 随着人工智能技术的飞速发展,深度学习已成为图像处理和分析领域的核心技术之一。本文将深入探讨基于深度学习的图像识别技术在智能监控领域的应用及其带来的变革。我们将从神经网络的基本构成出发,解析其如何实现对监控图像中复杂场景的高效识别与分析,并进一步讨论这些技术在提高监控准确性、实时性和自动化水平方面的作用。此外,文中还将涉及深度学习技术面临的挑战及未来发展趋势。
|
22天前
|
机器学习/深度学习 人工智能 算法
未来智能时代下的深度学习应用前景与挑战
随着人工智能技术的快速发展,深度学习作为其中的重要分支正逐渐成为各行业的研究热点。本文探讨了深度学习在未来智能时代中的应用前景和所面临的挑战,从技术发展、伦理道德等方面展开分析,旨在引发对于人工智能发展的思考和讨论。