无需编程,基于甲骨文oracle数据库零代码生成CRUD增删改查RESTful API接口

简介: 通过之前一篇文章 无需编程,基于PostgreSQL零代码生成CRUD增删改查RESTful API接口 的介绍,采用抽象工厂设计模式,已经支持了大象数据库PostgreSQL。之前通过字符串拼接生成DDL SQL语句,比较繁琐。本文开始,引入了FreeMarker模版引擎,通过配置模版实现创建和修改物理表结构SQL语句,简化了大量代码,提高了效率,并且通过配置oracle数据库SQL模版,基于oracle数据库,零代码实现crud增删改查。

无需编程,基于甲骨文oracle数据库零代码生成CRUD增删改查RESTful API接口

回顾

通过之前一篇文章 无需编程,基于PostgreSQL零代码生成CRUD增删改查RESTful API接口 的介绍,采用抽象工厂设计模式,已经支持了大象数据库PostgreSQL。之前通过字符串拼接生成DDL SQL语句,比较繁琐。本文开始,引入了FreeMarker模版引擎,通过配置模版实现创建和修改物理表结构SQL语句,简化了大量代码,提高了效率,并且通过配置oracle数据库SQL模版,基于oracle数据库,零代码实现crud增删改查。

FreeMarker简介

FreeMarker是一款模板引擎: 即一种基于模板和要改变的数据,并用来生成输出文本(HTML网页,电子邮件,配置文件,源代码等)的通用工具。 它不是面向最终用户的,而是一个Java类库,是一款程序员可以嵌入他们所开发产品的组件。模板编写为FreeMarker Template Language (FTL)。它是简单的,专用的语言, 不是像PHP那样成熟的编程语言。 那就意味着要准备数据在真实编程语言中来显示,比如数据库查询和业务运算,之后模板显示已经准备好的数据。在模板中,你可以专注于如何展现数据,而在模板之外可以专注于要展示什么数据。

UI界面

通过产品对象为例,无需编程,基于Oracle数据库,通过配置零代码实现CRUD增删改查RESTful API接口和管理UI。

productMeta
创建产品

table
编辑产品数据

productList
产品数据列表

Oracle SQL Developer
通过Oracle SQL Developer查询Oracle数据

定义元数据对象模型

元数据表ca_meta_table

ca_meta_table
元数据表ca_meta_table,用于记录表的基本信息。

TableEntity对象

TableEntity为“元数据表”对象,和ca_meta_table字段对应

public class TableEntity {
    private Long id;

    private String name;

    private String caption;

    private String description;

    private Timestamp createdDate;

    private Timestamp lastModifiedDate;

    private String pluralName;

    private String tableName;

    private EngineEnum engine;

    private Boolean createPhysicalTable;

    private Boolean reverse;

    private Boolean systemable;

    private Boolean readOnly;

    private List<ColumnEntity> columnEntityList;

    private List<IndexEntity> indexEntityList;
}

元数据列ca_meta_column

ca_meta_column
元数据列ca_meta_column,用于记录表字段信息,比如类型,长度,默认值等。

ColumnEntity对象

ColumnEntity为“元数据列”对象,和ca_meta_column字段对应

public class ColumnEntity {
  private Long id;

  private String name;

  private String caption;

  private String description;

  private Timestamp createdDate;

  private Timestamp lastModifiedDate;

  private Integer displayOrder;

  private DataTypeEnum dataType;

  private IndexTypeEnum indexType;

  private IndexStorageEnum indexStorage;

  private String indexName;

  private Integer length;

  private Integer precision;

  private Integer scale;

  private String defaultValue;

  private Long seqId;

  private Boolean unsigned;

  private Boolean autoIncrement;

  private Boolean nullable;

  private Boolean insertable;

  private Boolean updatable;

  private Boolean queryable;

  private Boolean displayable;

  private Boolean systemable;

  private Long tableId;
}

元数据索引ca_meta_index

ca_meta_index
元数据索引ca_meta_index,用于记录表联合索引信息,比如索引类型,名称等。

IndexEntity对象

IndexEntity为“元数据索引”对象,和ca_meta_index字段对应

public class IndexEntity {
  private Long id;

  private String name;

  private String caption;

  private String description;

  private Timestamp createdDate;

  private Timestamp lastModifiedDate;

  private IndexTypeEnum indexType;

  private IndexStorageEnum indexStorage;

  private Long tableId;

  private List<IndexLineEntity> indexLineEntityList;
}

元数据索引行ca_meta_index_line

ca_meta_index_line
元数据索引行ca_meta_index_line,用于记录表联合索引行信息,一个联合索引可以对应多个联合索引行,表示由多个字段组成。

IndexLineEntity对象

IndexLineEntity“元数据索行”对象,和ca_meta_index_line字段对应

public class IndexLineEntity {
  private Long id;

  private Long columnId;

  private ColumnEntity columnEntity;

  private Long indexId;
}

定义FreeMarker模版

创建表create-table.sql.ftl

CREATE TABLE "${tableName}" (
<#list columnEntityList as columnEntity>
  <#if columnEntity.dataType == "BOOL">
    "${columnEntity.name}" NUMBER(1)<#if columnEntity.defaultValue??> DEFAULT <#if columnEntity.defaultValue == "true">1<#else>0</#if></#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "INT">
    "${columnEntity.name}" INT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "BIGINT">
    "${columnEntity.name}" INT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "FLOAT">
    "${columnEntity.name}" FLOAT<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "DOUBLE">
    "${columnEntity.name}" REAL<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "DECIMAL">
    "${columnEntity.name}" DECIMAL<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "DATE">
    "${columnEntity.name}" DATE<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "TIME">
    "${columnEntity.name}" CHAR(8)<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "DATETIME">
    "${columnEntity.name}" DATE<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "TIMESTAMP">
    "${columnEntity.name}" TIMESTAMP<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "CHAR">
    "${columnEntity.name}" CHAR(${columnEntity.length})<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "VARCHAR">
    "${columnEntity.name}" VARCHAR(${columnEntity.length})<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "PASSWORD">
    "${columnEntity.name}" VARCHAR(200)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "ATTACHMENT">
    "${columnEntity.name}" VARCHAR(4000)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "TEXT">
    "${columnEntity.name}" VARCHAR(4000)<#if columnEntity.defaultValue??> DEFAULT '${columnEntity.defaultValue}'</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "LONGTEXT">
    "${columnEntity.name}" LONG<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "BLOB">
    "${columnEntity.name}" BLOB<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#elseif columnEntity.dataType == "LONGBLOB">
    "${columnEntity.name}" BLOB<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity_has_next>,</#if>
  <#else>
    "${columnEntity.name}" VARCHAR(200)<#if columnEntity.defaultValue??> DEFAULT ${columnEntity.defaultValue}</#if><#if columnEntity.nullable != true> NOT NULL</#if><#if columnEntity.indexType?? && columnEntity.indexType == "PRIMARY"> PRIMARY KEY</#if><#if columnEntity_has_next>,</#if>
  </#if>
</#list>
);

<#list columnEntityList as columnEntity>
  <#if columnEntity.indexType?? && columnEntity.indexType == "UNIQUE">
    ALTER TABLE "${tableName}" ADD CONSTRAINT "${columnEntity.indexName}" UNIQUE("${columnEntity.name}");
  </#if>

  <#if columnEntity.indexType?? && (columnEntity.indexType == "INDEX" || columnEntity.indexType == "FULLTEXT")>
    CREATE INDEX "${columnEntity.indexName}" ON "${tableName}" ("${columnEntity.name}");
  </#if>
</#list>

<#if indexEntityList??>
  <#list indexEntityList as indexEntity>
    <#if indexEntity.indexType?? && indexEntity.indexType == "UNIQUE">
      ALTER TABLE "${tableName}" ADD CONSTRAINT "${indexEntity.name}" UNIQUE(<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>);
    </#if>

    <#if indexEntity.indexType?? && (indexEntity.indexType == "INDEX" || indexEntity.indexType == "FULLTEXT")>
      CREATE INDEX "${indexEntity.name}" ON "${tableName}" (<#list indexEntity.indexLineEntityList as indexLineEntity>"${indexLineEntity.columnEntity.name}"<#if indexLineEntity_has_next>,</#if></#list>);
    </#if>
  </#list>
</#if>

COMMENT ON TABLE "${tableName}" IS '${caption}';

<#list columnEntityList as columnEntity>
  COMMENT ON COLUMN "${tableName}"."${columnEntity.name}" IS '${columnEntity.caption}';
</#list>

模版解析SQL

首先保存元数据信息,下一步传递模版名称和元数据model,动态解析成创建表SQL语句,然后创建物理表,这样元数据和物理表就关联上了。运行时通过解析元数据动态生成insert,select,update,delete等SQL语句,零代码实现业务数据crud功能。

public String processTemplateToString(String database, String templateName, Object dataModel) {
    String str = null;
    StringWriter stringWriter = new StringWriter();
    try {
        Configuration config = new Configuration(Configuration.VERSION_2_3_31);
        config.setNumberFormat("#");
        String templateValue = getTemplate(database, templateName);
        if (templateValue == null) {
          return str;
        }

        Template template = new Template(templateName, templateValue, config);
        template.process(dataModel, stringWriter);

        str = stringWriter.getBuffer().toString().trim();
        log.info(str);
    } catch (Exception e) {
        e.printStackTrace();
        throw new BusinessException(ApiErrorCode.DEFAULT_ERROR, e.getMessage());
    }

    return str;
}

public List<String> toCreateTableSql(TableEntity tableEntity) {
  String createTableSql = processTemplateToString("create-table.sql.ftl", tableEntity);

  if (createTableSql == null) {
    throw new BusinessException(ApiErrorCode.DEFAULT_ERROR, "create-table.sql is empty!");
  }

  List<String> sqls = new ArrayList<String>();
  String[] subSqls = createTableSql.split(";");
  for (String t : subSqls) {
    String subSql = t.trim();
    if (!subSql.isEmpty()) {
      sqls.add(t);
    }
  }

  return sqls;
}

public Long create(TableDTO tableDTO) {
  TableEntity tableEntity = tableMapper.toEntity(tableDTO);
  //TODO
  Long tableId = crudService.create(TABLE_TABLE_NAME, tableEntity);
  List<String> sqlList = crudService.toCreateTableSql(tableEntity);
  for (String sql: sqlList) {
    execute(sql);
  }
  //TODO
  return tableId;
}

修改表

freemarker.png
包括表结构和索引的修改,删除等,和创建表原理类似。

application.properties

需要根据需要配置数据库连接驱动,无需重新发布,就可以切换不同的数据库。

#oracle
spring.datasource.url=jdbc:oracle:thin:@//localhost:1521/XEPDB1
spring.datasource.driverClassName=oracle.jdbc.OracleDriver
spring.datasource.username=crudapi
spring.datasource.password=crudapi
spring.datasource.initialization-mode=always
spring.datasource.schema=classpath:schema.sql

小结

本文主要介绍了crudapi支持oracle数据库实现原理,并且以产品对象为例,零代码实现了CRUD增删改查RESTful API,后续介绍更多的数据库,比如MSSQL Server,Mongodb等。

实现方式 代码量 时间 稳定性
传统开发 1000行左右 2天/人 5个bug左右
crudapi系统 0行 1分钟 基本为0

综上所述,利用crudapi系统可以极大地提高工作效率和节约成本,让数据处理变得更简单!

目录
相关文章
|
2月前
|
API 数据库 C语言
【C/C++ 数据库 sqlite3】SQLite C语言API返回值深入解析
【C/C++ 数据库 sqlite3】SQLite C语言API返回值深入解析
189 0
|
2月前
|
Prometheus 网络协议 JavaScript
api 网关 kong 数据库记录请求响应报文
Kong的tcp-log-with-body插件是一个高效的工具,它能够转发Kong处理的请求和响应。这个插件非常适用于需要详细记录API请求和响应信息的情景,尤其是在调试和排查问题时。
90 0
api 网关 kong 数据库记录请求响应报文
|
2月前
|
SQL Oracle 关系型数据库
【Oracle】玩转Oracle数据库(五):PL/SQL编程
【Oracle】玩转Oracle数据库(五):PL/SQL编程
85 8
|
1天前
|
DataWorks Oracle 数据库连接
DataWorks产品使用合集之如何实现数据集成接入提供ODBC API的Oracle数据库
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
9 0
|
2月前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用合集之在oracle cdc2.3 + flink1.7环境下只能初始化同步数据,但后续Oracle的增删改查无法同步出去,是什么导致的
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
前端开发 API 数据库
Django(五):如何在Django中通过API提供数据库数据给前端
Django(五):如何在Django中通过API提供数据库数据给前端
|
2月前
|
SQL Java 数据库连接
JDBC Java标准库提供的一些api(类+方法) 统一各种数据库提供的api
JDBC Java标准库提供的一些api(类+方法) 统一各种数据库提供的api
24 0
|
2月前
|
SQL 关系型数据库 API
从API获取数据并将其插入到PostgreSQL数据库:步骤解析
使用Python处理从API获取的数据并插入到PostgreSQL数据库:安装`psycopg2`,建立数据库连接,确保DataFrame与表结构匹配,然后使用`to_sql`方法将数据插入到已存在的表中。注意数据准备、权限设置、性能优化和安全处理。
|
2月前
|
API 数据库
ionic4 接收API数据库传值并显示
ionic4 接收API数据库传值并显示
30 0
|
2月前
|
数据库连接 API 数据库
SQLite3 数据库 C语言API 打开函数sqlite3_open 详解
SQLite3 数据库 C语言API 打开函数sqlite3_open 详解
96 0

推荐镜像

更多