美团动态线程池实践思路开源项目(DynamicTp),线程池源码解析及通知告警篇

简介: 大家好,这篇文章我们来聊下动态线程池开源项目(DynamicTp)的通知告警模块。目前项目提供以下通知告警功能,每一个通知项都可以独立配置是否开启、告警阈值、告警间隔时间、平台等,具体代码请看core模块notify包。

大家好,这篇文章我们来聊下动态线程池开源项目(DynamicTp)的通知告警模块。目前项目提供以下通知告警功能,每一个通知项都可以独立配置是否开启、告警阈值、告警间隔时间、平台等,具体代码请看core模块notify包。

1.核心参数变更通知

2.线程池活跃度告警

3.队列容量告警

4.拒绝策略告警

5.任务执行超时告警

6.任务排队超时告警


DynamicTp项目地址

目前700star,感谢你的star,欢迎pr,业务之余一起给开源贡献一份力量

gitee地址https://gitee.com/yanhom/dynamic-tp

github地址https://github.com/lyh200/dynamic-tp


系列文章

美团动态线程池实践思路,开源了

动态线程池框架(DynamicTp),监控及源码解析篇

动态线程池(DynamicTp),动态调整Tomcat、Jetty、Undertow线程池参数篇


线程池解读

上篇文章里大概讲到了JUC线程池的执行流程,我们这里再仔细回顾下,上图是JUC下线程池ThreadPoolExecutor类的继承体系。

顶级接口Executor提供了一种方式,解耦任务的提交和执行,只定义了一个execute(Runnable command)方法用来提交任务,至于具体任务怎么执行则交给他的实现者去自定义实现。

ExecutorService接口继承Executor,且扩展了生命周期管理的方法、返回Futrue的方法、批量提交任务的方法

void shutdown();
List<Runnable> shutdownNow();
boolean isShutdown();
boolean isTerminated();
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);

<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) throws InterruptedException;
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,long timeout, TimeUnit unit) throws InterruptedException;
<T> T invokeAny(Collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException;
<T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException;

AbstractExecutorService抽象类继承ExecutorService接口,对ExecutorService相关方法提供了默认实现,用RunnableFuture的实现类FutureTask包装Runnable任务,交给execute()方法执行,然后可以从该FutureTask阻塞获取执行结果,并且对批量任务的提交做了编排

protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
    return new FutureTask<T>(runnable, value);
}
    
public Future<?> submit(Runnable task) {
    if (task == null) throw new NullPointerException();
    RunnableFuture<Void> ftask = newTaskFor(task, null);
    execute(ftask);
    return ftask;
}

ThreadPoolExecutor继承AbstractExecutorService,采用池化思想管理一定数量的线程来调度执行提交的任务,且定义了一套线程池的生命周期状态,用一个ctl变量来同时保存当前池状态(高3位)和当前池线程数(低29位)。看过源码的小伙伴会发现,ThreadPoolExecutor类里的方法大量有同时需要获取或更新池状态和池当前线程数的场景,放一个原子变量里,可以很好的保证数据的一致性以及代码的简洁性。

  // 用此变量保存当前池状态(高3位)和当前线程数(低29位)
  private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); 
  private static final int COUNT_BITS = Integer.SIZE - 3;
  private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

  // runState is stored in the high-order bits
  // 可以接受新任务提交,也会处理任务队列中的任务
  // 结果:111 00000000000000000000000000000
  private static final int RUNNING    = -1 << COUNT_BITS;
  
  // 不接受新任务提交,但会处理任务队列中的任务
  // 结果:000 00000000000000000000000000000
  private static final int SHUTDOWN   =  0 << COUNT_BITS;
  
  // 不接受新任务,不执行队列中的任务,且会中断正在执行的任务
  // 结果:001 00000000000000000000000000000
  private static final int STOP       =  1 << COUNT_BITS;
  
  // 任务队列为空,workerCount = 0,线程池的状态在转换为TIDYING状态时,会执行钩子方法terminated()
  // 结果:010 00000000000000000000000000000
  private static final int TIDYING    =  2 << COUNT_BITS;
  
  // 调用terminated()钩子方法后进入TERMINATED状态
  // 结果:010 00000000000000000000000000000
  private static final int TERMINATED =  3 << COUNT_BITS;

  // Packing and unpacking ctl
  // 低29位变为0,得到了线程池的状态
  private static int runStateOf(int c)     { return c & ~CAPACITY; }
  // 高3位变为为0,得到了线程池中的线程数
  private static int workerCountOf(int c)  { return c & CAPACITY; }
  private static int ctlOf(int rs, int wc) { return rs | wc; }

核心入口execute()方法执行逻辑如下:

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    else if (!addWorker(command, false))
        reject(command);
}

可以总结出如下主要执行流程,当然看上述代码会有一些异常分支判断,可以自己顺理加到下述执行主流程里

1.判断线程池的状态,如果不是RUNNING状态,直接执行拒绝策略

2.如果当前线程数 < 核心线程池,则新建一个线程来处理提交的任务

3.如果当前线程数 > 核心线程数且任务队列没满,则将任务放入任务队列等待执行

4.如果 核心线程池 < 当前线程池数 < 最大线程数,且任务队列已满,则创建新的线程执行提交的任务

5.如果当前线程数 > 最大线程数,且队列已满,则拒绝该任务

addWorker()方法逻辑

private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            // 获取当前池状态
            int rs = runStateOf(c);

            // 1.判断如果线程池状态 > SHUTDOWN,直接返回false,否则2
            // 2.如果线程池状态 = SHUTDOWN,并且firstTask不为null则直接返回false,因为SHUTDOWN状态的线程池不能在接受新任务,否则3
            // 3.如果线程池状态 = SHUTDOWN,并且firstTask == null,此时如果任务队列为空,则直接返回false
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                // 1.如果当前线程池线程数大于等于CAPACITY(理论上的最大值5亿),则返回fasle
                // 2.如果创建核心线程情况下当前池线程数 >= corePoolSize,则返回false
                // 3.如果创建非核心线程情况下当前池线程数 >= maximumPoolSize,则返回false
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                // cas 增加当前池线程数量,成功则退出循环    
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                // cas 增加当前池线程数量失败(多线程并发),则重新获取ctl,计算出当前线程池状态,如果不等于上述计算的状态rs,则说明线程池状态发生了改变,需要跳到外层循环重新进行状态判断,否则执行内部循环
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            // 至此说明线程池状态校验通过,且增加池线程数量成功,则创建一个Worker线程来执行任务
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                // 访问worker set时需要获取mainLock全局锁
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    // 1.当前池状态 < SHUTDOWN,也就是RUNNING状态,如果已经started,抛出异常
                    // 2.当前池状态 = SHUTDOWN,且firstTask == null,需要处理任务队列中的任务,如果已经started,抛出异常
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        // 刚创建线程添加到workers集合中
                        workers.add(w);
                        int s = workers.size();
                        // 判断更新历史最大线程数量
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    // 启动新建线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                // 启动失败,workerCount--,workers里移除该worker
                addWorkerFailed(w);
        }
        return workerStarted;
    }

线程池中的线程并不是直接用的Thread类,而是定义了一个内部工作线程Worker类,实现了AQS以及Runnable接口,然后持有一个Thread类的引用及一个firstTask(创建后第一个要执行的任务),每个Worker线程启动后会执行run()方法,该方法会调用执行外层runWorker(Worker w)方法

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        // 1.如果task不为空,则作为该线程的第一个任务直接执行
        // 2.如果task为空,则通过getTask()方法从任务队列中获取任务执行
        while (task != null || (task = getTask()) != null) {
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            // 线程池状态 >= STOP,则中断线程
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                // 实际执行任务前调用的钩子方法
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    // 实际执行任务
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    // 任务执行后调用的钩子方法
                    afterExecute(task, thrown);
                }
            } finally {
                // 任务置为null,重新获取新任务,完成数++
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        // 无任务可执行,执行worker销毁逻辑
        processWorkerExit(w, completedAbruptly);
    }
}

getTask()方法逻辑

private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);
        
        // 以下两种情况递减工作线程数量
        // 1. rs >= STOP
        // 2. rs == SHUTDOWN && workQueue.isEmpty()
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }

        int wc = workerCountOf(c);

        // Are workers subject to culling?
        // 允许核心线程超时 或者 当前线程数 > 核心线程数,有可能发生超时关闭
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        // wc什么情况 > maximumPoolSize,调用setMaximumPoolSize()方法将maximumPoolSize调小了,会发生这种情况,此时需要关闭多余线程
        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
            // 阻塞队列获取任务
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)
                return r;
            timedOut = true;
        } catch (InterruptedException retry) {
            // 发生中断,进行重试
            timedOut = false;
        }
    }
}

以上内容比较详细的介绍了ThreadPoolExecutor的继承体系,以及相关的核心源码,基于此,现在我们来看DynamicTp提供的告警通知能力。


核心参数变更通知

对应配置中心的监听端监听到配置变更后,封装到DtpProperties中然后交由DtpRegistry类中的refresh()方法去做配置更新,同时通知时会高亮显示有变更的字段


线程池活跃度告警

活跃度 = activeCount / maximumPoolSize

服务启动后会开启一个定时监控任务,每隔一定时间(可配置)去计算线程池的活跃度,达到配置的threshold阈值后会触发一次告警,告警间隔内多次触发不会发送告警通知


队列容量告警

容量使用率 = queueSize / queueCapacity

服务启动后会开启一个定时监控任务,每隔一定时间去计算任务队列的使用率,达到配置的threshold阈值后会触发一次告警,告警间隔内多次触发不会发送告警通知


拒绝策略告警

/**
 * Do sth before reject.
 * @param executor ThreadPoolExecutor instance
 */
default void beforeReject(ThreadPoolExecutor executor) {
    if (executor instanceof DtpExecutor) {
        DtpExecutor dtpExecutor = (DtpExecutor) executor;
        dtpExecutor.incRejectCount(1);
        Runnable runnable = () -> AlarmManager.doAlarm(dtpExecutor, REJECT);
        AlarmManager.triggerAlarm(dtpExecutor.getThreadPoolName(), REJECT.getValue(), runnable);
    }
}

线程池线程数达到配置的最大线程数,且任务队列已满,再提交任务会触发拒绝策略。DtpExecutor线程池用到的RejectedExecutionHandler是经过动态代理包装过的,在执行具体的拒绝策略之前会执行RejectedAware类beforeReject()方法,此方法会去做拒绝数量累加(总数值累加、周期值累加)。且判断如果周期累计值达到配置的阈值,则会触发一次告警通知(同时重置周期累加值为0及上次告警时间为当前时间),告警间隔内多次触发不会发送告警通知


任务队列超时告警

重写ThreadPoolExecutor的execute()方法和beforeExecute()方法,如果配置了执行超时或排队超时值,则会用DtpRunnable包装任务,同时记录任务的提交时间submitTime,beforeExecute根据当前时间和submitTime的差值就可以计算到该任务在队列中的等待时间,然后判断如果差值大于配置的queueTimeout则累加排队超时任务数量(总数值累加、周期值累加)。且判断如果周期累计值达到配置的阈值,则会触发一次告警通知(同时重置周期累加值为0及上次告警时间为当前时间),告警间隔内多次触发不会发送告警通知

@Override
public void execute(Runnable command) {
    if (CollUtil.isNotEmpty(taskWrappers)) {
        for (TaskWrapper t : taskWrappers) {
            command = t.wrap(command);
        }
    }

    if (runTimeout > 0 || queueTimeout > 0) {
        command = new DtpRunnable(command);
    }
    super.execute(command);
}
@Override
protected void beforeExecute(Thread t, Runnable r) {
    if (!(r instanceof DtpRunnable)) {
        super.beforeExecute(t, r);
        return;
    }
    DtpRunnable runnable = (DtpRunnable) r;
    long currTime = System.currentTimeMillis();
    if (runTimeout > 0) {
        runnable.setStartTime(currTime);
    }
    if (queueTimeout > 0) {
        long waitTime = currTime - runnable.getSubmitTime();
        if (waitTime > queueTimeout) {
            queueTimeoutCount.incrementAndGet();
            Runnable alarmTask = () -> AlarmManager.doAlarm(this, QUEUE_TIMEOUT);
            AlarmManager.triggerAlarm(this.getThreadPoolName(), QUEUE_TIMEOUT.getValue(), alarmTask);
        }
    }

    super.beforeExecute(t, r);
}


任务执行超时告警

重写ThreadPoolExecutor的afterExecute()方法,根据当前时间和beforeExecute()中设置的startTime的差值即可算出任务的实际执行时间,然后判断如果差值大于配置的runTimeout则累加排队超时任务数量(总数值累加、周期值累加)。且判断如果周期累计值达到配置的阈值,则会触发一次告警通知(同时重置周期累加值为0及上次告警时间为当前时间),告警间隔内多次触发不会发送告警通知

@Override
protected void afterExecute(Runnable r, Throwable t) {

    if (runTimeout > 0) {
        DtpRunnable runnable = (DtpRunnable) r;
        long runTime = System.currentTimeMillis() - runnable.getStartTime();
        if (runTime > runTimeout) {
            runTimeoutCount.incrementAndGet();
            Runnable alarmTask = () -> AlarmManager.doAlarm(this, RUN_TIMEOUT);
            AlarmManager.triggerAlarm(this.getThreadPoolName(), RUN_TIMEOUT.getValue(), alarmTask);
        }
    }

    super.afterExecute(r, t);
}


告警通知相关配置项

如果想使用通知告警功能,配置文件必须要配置platforms字段,且可以配置多个平台,如钉钉、企微等;notifyItems配置具体告警项,包括阈值、平台、告警间隔等。

spring:
  dynamic:
    tp:
      # 省略其他项
      platforms:                         # 通知平台
        - platform: wechat
          urlKey: 38a98-0c5c3b649c
          receivers: test
        - platform: ding
          urlKey: f80db3e801d593604f4a08dcd6a
          secret: SECb5444a6f375d5b9d21
          receivers: 17811511815
      executors:                                   # 动态线程池配置,都有默认值,采用默认值的可以不配置该项,减少配置量
        - threadPoolName: dtpExecutor1
          executorType: common                          # 线程池类型common、eager:适用于io密集型
          corePoolSize: 2
          maximumPoolSize: 4
          queueCapacity: 200
          queueType: VariableLinkedBlockingQueue       # 任务队列,查看源码QueueTypeEnum枚举类
          rejectedHandlerType: CallerRunsPolicy        # 拒绝策略,查看RejectedTypeEnum枚举类
          keepAliveTime: 50
          allowCoreThreadTimeOut: false
          threadNamePrefix: dtp1                         # 线程名前缀
          waitForTasksToCompleteOnShutdown: false        # 参考spring线程池设计
          awaitTerminationSeconds: 5                     # 单位(s)
          preStartAllCoreThreads: false                  # 是否预热核心线程,默认false
          runTimeout: 200                                # 任务执行超时阈值,目前只做告警用,单位(ms)
          queueTimeout: 100                              # 任务在队列等待超时阈值,目前只做告警用,单位(ms)
          taskWrapperNames: ["ttl"]                      # 任务包装器名称,集成TaskWrapper接口
          notifyItems:                     # 报警项,不配置自动会按默认值配置(变更通知、容量报警、活性报警、拒绝报警、任务超时报警)
            - type: capacity               # 报警项类型,查看源码 NotifyTypeEnum枚举类
              threshold: 80                # 报警阈值
              platforms: [ding,wechat]     # 可选配置,不配置默认拿上层platforms配置的所以平台
              interval: 120                # 报警间隔(单位:s)
            - type: change
            - type: liveness
              threshold: 80
              interval: 120
            - type: reject
              threshold: 1
              interval: 160
            - type: run_timeout
              threshold: 1
              interval: 120
            - type: queue_timeout
              threshold: 1
              interval: 140

总结

本文开头介绍了线程池ThreadPoolExecutor的继承体系,核心流程的源码解读。然后介绍了DynamicTp提供的以上6种告警通知能力,希望通过监控+告警可以让我们及时感知到我们业务线程池的执行负载情况,第一时间做出调整,防止事故的发生。


联系我

对项目有什么想法或者建议,可以加我微信交流,或者创建issues,一起完善项目

公众号:CodeFox

微信:yanhom1314

目录
相关文章
|
8月前
|
人工智能 API 语音技术
HarmonyOS Next~鸿蒙AI功能开发:Core Speech Kit与Core Vision Kit的技术解析与实践
本文深入解析鸿蒙操作系统(HarmonyOS)中的Core Speech Kit与Core Vision Kit,探讨其在AI功能开发中的核心能力与实践方法。Core Speech Kit聚焦语音交互,提供语音识别、合成等功能,支持多场景应用;Core Vision Kit专注视觉处理,涵盖人脸检测、OCR等技术。文章还分析了两者的协同应用及生态发展趋势,展望未来AI技术与鸿蒙系统结合带来的智能交互新阶段。
517 31
|
8月前
|
存储 网络协议 安全
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
323 23
|
8月前
|
缓存 边缘计算 安全
阿里云CDN:全球加速网络的实践创新与价值解析
在数字化浪潮下,用户体验成为企业竞争力的核心。阿里云CDN凭借技术创新与全球化布局,提供高效稳定的加速解决方案。其三层优化体系(智能调度、缓存策略、安全防护)确保低延迟和高命中率,覆盖2800+全球节点,支持电商、教育、游戏等行业,帮助企业节省带宽成本,提升加载速度和安全性。未来,阿里云CDN将继续引领内容分发的行业标准。
481 7
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
DeepSeek 实践应用解析:合力亿捷智能客服迈向 “真智能” 时代
DeepSeek作为人工智能领域的创新翘楚,凭借领先的技术实力,在智能客服领域掀起变革。通过全渠道智能辅助、精准对话管理、多语言交互、智能工单处理、个性化推荐、情绪分析及反馈监控等功能,大幅提升客户服务效率和质量,助力企业实现卓越升级,推动智能化服务发展。
333 1
|
8月前
|
机器学习/深度学习 人工智能 监控
鸿蒙赋能智慧物流:AI类目标签技术深度解析与实践
在数字化浪潮下,物流行业面临变革,传统模式的局限性凸显。AI技术为物流转型升级注入动力。本文聚焦HarmonyOS NEXT API 12及以上版本,探讨如何利用AI类目标签技术提升智慧物流效率、准确性和成本控制。通过高效数据处理、实时监控和动态调整,AI技术显著优于传统方式。鸿蒙系统的分布式软总线技术和隐私保护机制为智慧物流提供了坚实基础。从仓储管理到运输监控再到配送优化,AI类目标签技术助力物流全流程智能化,提高客户满意度并降低成本。开发者可借助深度学习框架和鸿蒙系统特性,开发创新应用,推动物流行业智能化升级。
263 1
|
10月前
|
Serverless 对象存储 人工智能
智能文件解析:体验阿里云多模态信息提取解决方案
在当今数据驱动的时代,信息的获取和处理效率直接影响着企业决策的速度和质量。然而,面对日益多样化的文件格式(文本、图像、音频、视频),传统的处理方法显然已经无法满足需求。
389 4
智能文件解析:体验阿里云多模态信息提取解决方案
|
8月前
|
存储 自然语言处理 监控
深度解析淘宝商品评论API接口:技术实现与应用实践
淘宝商品评论API接口是电商数据驱动的核心工具,帮助开发者高效获取用户评价、画像及市场趋势。其核心功能包括多维度信息采集、筛选排序、动态更新、OAuth 2.0认证和兼容多种请求方式。通过该接口,开发者可进行商品优化、竞品分析、舆情监控等。本文详细解析其技术原理、实战应用及挑战应对策略,助力开启数据驱动的电商运营新篇章。
|
1月前
|
Java
如何在Java中进行多线程编程
Java多线程编程常用方式包括:继承Thread类、实现Runnable接口、Callable接口(可返回结果)及使用线程池。推荐线程池以提升性能,避免频繁创建线程。结合同步与通信机制,可有效管理并发任务。
139 6
|
4月前
|
Java API 微服务
为什么虚拟线程将改变Java并发编程?
为什么虚拟线程将改变Java并发编程?
293 83
|
24天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
187 0

热门文章

最新文章

推荐镜像

更多
  • DNS