北京大学肖臻老师《区块链技术与应用》公开课笔记2——比特币中的密码学原理

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 北京大学肖臻老师《区块链技术与应用》公开课笔记2——比特币中的密码学原理

比特币被称为加密货币crypto-currency

区块链上内容都是公开的,包括账户的地址,转账的金额。

比特币主要用到了密码学中的两个功能:1.哈希2.签名

1.哈希
密码学中用到的哈希函数被称为cryptographic hash function,它有两个重要的性质:

①collision(这里指哈希碰撞) resistance

例如x≠y H(x)=H(y) 两个不同的输入,输出却是相等的,这就称哈希碰撞。它是不可避免的,因为输入空间远远大于输出空间。给出x,很难找到y,除非蛮力求解(brute-force)。

该性质的作用:对一个message求digest

比如message取m,m的哈希值是H(m)=digest,如果有人想篡改m值而H(m)不变,则无法做到。

哈希碰撞无法人为制造,无法验证,是根据实践经验得来的。

②hiding 哈希函数的计算过程是单向的,不可逆的。(从H(x)无法推导出x)

hiding性质前提是输入空间足够大,分布比较均匀。如果不是足够大,一般在x后面拼接一个随机数,如H(x||nonce)。

该性质的作用:和collision resistance 结合在一起,用来实现digital commitment(又称为digital equivalent of a sealed envelope)

把预测结果作为输入x,算出一个哈希值,讲哈希值公布,hiding让人们知道哈希值而不知道预测值,最后再将x公布,因为有collision resistance的性质,预测结果是不可篡改的。

这里肖老师举了一个股票的例子,如下

某个人对某个股票进行涨停预测,我们如何保证能够知晓其预测是否准确?最简单的是提前公布,等待实际结果出现后验证。但实际中,当提前发布预测后,可能会由于预测者本身对股市实际结果造成影响。所以,应该将提前将其写于纸上并密封,交给第三方机构保管,等到实际结果出现后开启密封与实际对比,这就是digital commitment。而第三方机构需要能够使人信服,在实际生活中,有很多场景并不存在一个这样的第三方机构,而区块链技术正为此提供了一个很好的解决方法。

除了密码学中要求的这两个性质外,比特币中用到的哈希函数还有第三个性质:

③puzzle friendly 指哈希值的预算事先是不可预测的。

假如哈希值是00…0XX…X,一样事先无法知道哪个值更容易算出这个结果,还是要一个一个带入。

比特币挖矿的过程中实际就是找一个nonce,nonce跟区块的块头里的其他信息合一起作为输入,得出的哈希值要小于等于某个指定的目标预值。H(block header)≤target。block header 指块头,块头里有很多域,其中一个域是我们可以设置的随机数nonce,挖矿的过程是不停的试随机数,使得block header取哈希后落在指定的范围之内。

puzzle friendly是指挖矿过程中没有捷径,为了使输出值落在指定范围,只能一个一个去试。所以这个过程还可以作为工作量证明(proof of work)。

挖矿很难,验证很容易。(difficult to solve ,but easy to verify)

比特币中用的哈希函数叫作SHA-256(secure hash algorithm )以上三个性质它都是满足的。

2.签名
在比特币系统中开账户:

在本地创立一个公私钥匙对(public key ,private key),这就是一个账户。公私钥匙对是来自于非对称的加密技术(asymmetric encryption algorithm)。

两人之间信息的交流可以利用密钥(encryption key),A将信息加密后发给B,B收到后用密钥解密,因为加密和解密用的是同一个密钥,所以叫对称加密。前提是有渠道可以安全地把密钥分发给通讯的双方。因此对称加密的缺点就是密钥的分发不方便,因为在网络上很容易被窃听。非对称密钥是用一对密钥而不是一个,加密用公钥,解密用私钥,加密和解密用的都是接收方的公钥和私钥。公钥是不用保密的,私钥要保密但是私钥只要保存在本地就行,不用传给对方。公钥相当于银行账号,别人转账只要知道公钥就行,私钥相当于账户密码,知道私钥可以把账户上钱转走。公钥和私钥是用来签名。

假如A想向B转10个比特币,A把交易放在区块链上,别人怎么知道这笔交易是A发起的呢?这就需要A要用自己的私钥给交易签名,其他人收到这笔交易后,要用A的公钥去验证签名。签名用私钥,验证用公钥,用的仍然是同一个人的。创建账户产生相同公私钥的可能性微乎其微,所以大量创建账户来窃取其他人账户是不可行的。

我们假设产生公私钥时有一个好的随机源(a good source of randomness),产生公私钥是随机的,如果随机源不好,就有可能产生相同的公私钥。比特币中用的签名算法,不仅是生成公私钥的时候要有好的随机源,之后每一次签名时也要有好的随机源。只要有一次签名用的随机源不好的话,就有可能泄露私钥。

相关文章
|
2月前
|
存储 供应链 分布式数据库
深入理解区块链技术:原理、应用与挑战
本文旨在探讨区块链技术的基本原理、主要应用及其面临的挑战。通过分析区块链的分布式账本技术、加密算法和共识机制,我们揭示了其如何在无需中心化权威的情况下确保数据的不可篡改性和透明性。此外,文章还讨论了区块链在金融、供应链管理、智能合约等领域的应用案例,并指出了当前区块链技术面临的可扩展性、隐私保护和法律监管等挑战。通过对这些内容的深入分析,我们希望为读者提供一个全面而深入的区块链技术概览。
179 16
|
1月前
|
存储 供应链 算法
深入探索区块链技术:原理、应用与未来展望
本文将带你深入了解区块链技术的基本原理,探讨其在金融、供应链、医疗等多个领域的应用案例,并展望其未来的发展趋势。通过本文,你将对区块链技术有一个全面的认识,理解其背后的技术逻辑和应用场景。
|
2月前
|
人工智能 供应链 物联网
探索区块链技术:原理、应用与未来趋势
探索区块链技术:原理、应用与未来趋势
47 1
|
2月前
|
供应链 算法 区块链
深入浅出区块链技术:从原理到应用
【10月更文挑战第21天】 本文旨在为读者提供一个关于区块链技术的全面概述,包括其工作原理、关键技术特点以及在现实世界中的应用案例。通过本文,您将能够理解区块链如何在不依赖中心化机构的情况下确保数据的安全性和不可篡改性,并探讨这项技术如何被应用于金融、供应链管理等多个领域,以提高效率和透明度。
97 1
|
2月前
|
存储 供应链 算法
深入解析区块链技术的核心原理与应用前景
深入解析区块链技术的核心原理与应用前景
64 0
|
2月前
|
存储 供应链 分布式数据库
深入理解区块链技术的核心原理
深入理解区块链技术的核心原理
|
2月前
|
供应链 区块链
探索区块链技术:从原理到应用
探索区块链技术:从原理到应用
60 0
|
2月前
|
存储 供应链 物联网
深入解析区块链技术的核心原理与应用前景
深入解析区块链技术的核心原理与应用前景
|
2月前
|
存储 供应链 安全
深度解析区块链技术的核心原理与应用前景
深度解析区块链技术的核心原理与应用前景
55 0
|
2月前
|
供应链 安全 区块链
深入浅出区块链技术:从原理到应用
【10月更文挑战第24天】 在数字时代,区块链技术以其独特的去中心化、不可篡改和透明性特点,正逐渐改变着我们的世界。本文将带你一探究竟,从区块链的基础原理出发,逐步深入到它的应用场景,让你不仅了解区块链“是什么”,更能明白它“能做什么”。无需担心技术术语的晦涩难懂,我们将用最通俗易懂的语言,为你揭开区块链的神秘面纱。
65 0