Java8新特性:函数式接口,方法与构造器引用

简介: Java8新特性:函数式接口,方法与构造器引用

Java8 新特性

函数式接口(Functional)

通过上面的 Lambda表达式的学习,我们认识了 新的语法,支持这种语法的接口

只包含一个抽象方法的接口,称为函数式接口

你只可以通过 Lambda表达式,来创建该接口的对象,(Lambda表达式抛出一个抛出一个检查异常(即,运行时异常),这个衣长需要在目标接口的抽象方法上进行声明)

我们可以在接口上使用@FunctionalInterface注解,这样做可以检查这个接口是不是函数式接口,同时javadoc也会包含一条声明说明这个接口是一个函数式接口,

java.util.funcion包下定义了Java8丰富的函数式接口

Lambda的表达式本质其实就是函数式接口的实例


什么是函数式接口呢?


Runnable接口就是一个很典型的函数式接口


@FunctionalInterface
public interface Runnable {
    public abstract void run();
}

这里我们自己定一个


@FunctionalInterface

public interface MyinterFace {

   void method1();

}


Java内置四大核心函数式接口

2.png

理论+实践


我们以 Consumer 与 Predicate举例子

/**
 * @author : <h2>冷环渊</h2>
 * @date : 2021/12/11
 * @context: <h4>
 * 消费型接口 Consumer<T> Accept(T t)
 * 供给型接口 Supplier<T> T get()
 * 函数式接口 Function<T> R apply(T t)
 * 断定型接口 Predicate<T> boolean test(T t)
 * </h4>
 */
public class LambdaTest2 {
    /**
     * @author 冷环渊 Doomwatcher
     * @context: Consumer<T> 使用
     * @date: 2021/12/11 14:37
     * @param
     * @return: void
     */
    @Test
    public void Test1() {
        happyTime(500, new Consumer<Double>() {
            @Override
            public void accept(Double aDouble) {
                System.out.println("天上人间的水今天很贵:" + aDouble);
            }
        });
        System.out.println("****************************");
        happyTime(400, money -> System.out.println("学习太累了,去天上人间买了瓶矿泉水,价格为:" + money));
    }
    /**
     * @author: 冷环渊 Doomwatcher
     * @context:
     * @date: 2021/12/11 14:33
     * @param money
     * @param con
     * @return void
     */
    public void happyTime(double money, Consumer<Double> con) {
        con.accept(money);
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context: 断言 Predicate 的使用
     * @date: 2021/12/11 14:39
     * @param
     * @return: void
     */
    @Test
    public void Test2() {
        //传统写法
        List<String> filterList = Arrays.asList("北京", "天津", "南京", "东京", "江南");
        List<String> filterStr = filterString(filterList, new Predicate<String>() {
            @Override
            public boolean test(String s) {
                return s.contains("京");
            }
        });
        System.out.println(filterStr);
        System.out.println("*******************************");
        // Lambda表达式 写法
        List<String> filterList1 = Arrays.asList("北京", "天津", "南京", "东京", "江南");
        List<String> filterStr1 = filterString(filterList1, s -> s.contains("京"));
        System.out.println(filterStr1);
    }
    /**
     * @author 冷环渊 Doomwatcher
     * @context:
     * @date: 2021/12/11 14:49
     * @param list
     * @param pre
     * @return: java.util.List<java.lang.String>
     */
    public List<String> filterString(List<String> list, Predicate<String> pre) {
        ArrayList<String> filterlist = new ArrayList<>();
        for (String s : list) {
            if (pre.test(s)) {
                filterlist.add(s);
            }
        }
        return filterlist;
    }
}

方法引用与构造器引用

方法引用


当前要传递给 Lambda体的操作,已经有了实现的方法了,可以使用方法引用

方法引用可以看做是Lambda表达式的深层次表达,换句话说,方法引用就是Lambda表达式,只不过和之前我们自己编写不同,这里通过方法的名字来指向一个方法,可以认为是Lambda表达式的一种语法糖

要求:实现接口的抽象方法的参数列表和返回值类型。必须与方法引用的方法的参数列表和返回值保持一致

格式:使用操作符“::”将类或者对象与方法名字分开来

如下是三种主要的使用情况

对象::实例方法名

类::静态方法名

类::实例方法名

coding

准备两个类 一个是list集合,一个是对象


Employee get/set 和 tostring 为防止无用篇幅过长,这里我们简写只看一下对象属性即可


package Lambda.MethodReferences;
/**
 *
 * @author : <h2>冷环渊</h2>
 * @date : 2021/12/11
 * @context:<h4>提供用于测试的对象</h4>
 */
public class Employee {
    private int id;
    private String name;
    private int age;
    private double salary;
\
}

EmployeeData

package Lambda.MethodReferences;
import java.util.ArrayList;
import java.util.List;
/**
 *
 * @author : <h2>冷环渊</h2>
 * @date : 2021/12/11
 * @context:<h4>提供用于测试的数据</h4>
 */
public class EmployeeData {
    public static List<Employee> getEmployees() {
        List<Employee> list = new ArrayList<>();
        list.add(new Employee(1001, "马化腾", 34, 6000.38));
        list.add(new Employee(1002, "马云", 12, 9876.12));
        list.add(new Employee(1003, "刘强东", 33, 3000.82));
        list.add(new Employee(1004, "雷军", 26, 7657.37));
        list.add(new Employee(1005, "李彦宏", 65, 5555.32));
        list.add(new Employee(1006, "比尔盖茨", 42, 9500.43));
        list.add(new Employee(1007, "任正非", 26, 4333.32));
        list.add(new Employee(1008, "扎克伯格", 35, 2500.32));
        return list;
    }
}

方法引用 test

/**
 * @author : <h2>冷环渊</h2>
 * @date : 2021/12/11
 * @context:<h4>
 * 方法引用的使用
 *
 * 1.使用情境:当要传递给Lambda体的操作,已经有实现的方法了,可以使用方法引用!
 * 2.方法引用,本质上就是Lambda表达式,而Lambda表达式作为函数式接口的实例。所以
 *   方法引用,也是函数式接口的实例。
 * 3. 使用格式:  类(或对象) :: 方法名
 * 4. 具体分为如下的三种情况:
 *    情况1     对象 :: 非静态方法
 *    情况2     类 :: 静态方法
 *    情况3     类 :: 非静态方法
 * 5. 方法引用使用的要求:要求接口中的抽象方法的形参列表和返回值类型与方法引用的方法的
 *    形参列表和返回值类型相同!(针对于情况1和情况2)
 *
 * </h4>
 *
 */
public class MethodRefTest {
    // 情况一:对象 :: 实例方法
    //Consumer中的void accept(T t)
    //PrintStream中的void println(T t)
    @Test
    public void test1() {
        Consumer<String> con1 = str -> System.out.println(str);
        con1.accept("北京");
        System.out.println("*******************");
        PrintStream ps = System.out;
        Consumer<String> con2 = ps::println;
        con2.accept("beijing");
    }
    //Supplier中的T get()
    //Employee中的String getName()
    @Test
    public void test2() {
        Employee emp = new Employee(1001, "Tom", 23, 5600);
        Supplier<String> sup1 = () -> emp.getName();
        System.out.println(sup1.get());
        System.out.println("*******************");
        Supplier<String> sup2 = emp::getName;
        System.out.println(sup2.get());
    }
    // 情况二:类 :: 静态方法
    //Comparator中的int compare(T t1,T t2)
    //Integer中的int compare(T t1,T t2)
    @Test
    public void test3() {
        Comparator<Integer> com1 = (t1, t2) -> Integer.compare(t1, t2);
        System.out.println(com1.compare(12, 21));
        System.out.println("*******************");
        Comparator<Integer> com2 = Integer::compare;
        System.out.println(com2.compare(12, 3));
    }
    //Function中的R apply(T t)
    //Math中的Long round(Double d)
    @Test
    public void test4() {
        Function<Double, Long> func = new Function<Double, Long>() {
            @Override
            public Long apply(Double d) {
                return Math.round(d);
            }
        };
        System.out.println("*******************");
        Function<Double, Long> func1 = d -> Math.round(d);
        System.out.println(func1.apply(12.3));
        System.out.println("*******************");
        Function<Double, Long> func2 = Math::round;
        System.out.println(func2.apply(12.6));
    }
    // 情况三:类 :: 实例方法  (有难度)
    // Comparator中的int comapre(T t1,T t2)
    // String中的int t1.compareTo(t2)
    @Test
    public void test5() {
        Comparator<String> com1 = (s1, s2) -> s1.compareTo(s2);
        System.out.println(com1.compare("abc", "abd"));
        System.out.println("*******************");
        Comparator<String> com2 = String::compareTo;
        System.out.println(com2.compare("abd", "abm"));
    }
    //BiPredicate中的boolean test(T t1, T t2);
    //String中的boolean t1.equals(t2)
    @Test
    public void test6() {
        BiPredicate<String, String> pre1 = (s1, s2) -> s1.equals(s2);
        System.out.println(pre1.test("abc", "abc"));
        System.out.println("*******************");
        BiPredicate<String, String> pre2 = String::equals;
        System.out.println(pre2.test("abc", "abd"));
    }
    // Function中的R apply(T t)
    // Employee中的String getName();
    @Test
    public void test7() {
        Employee employee = new Employee(1001, "Jerry", 23, 6000);
        Function<Employee, String> func1 = e -> e.getName();
        System.out.println(func1.apply(employee));
        System.out.println("*******************");
        Function<Employee, String> func2 = Employee::getName;
        System.out.println(func2.apply(employee));
    }
}

构造方法引用


通过 简化 的方式,来调用不同的构造器


一、构造器引用


和方法引用类似,函数式接口的抽象方法的形参列表和构造器的形参列表一致。

抽象方法的返回值类型即为构造器所属的类的类型


二、数组引用


大家可以把数组看做是一个特殊的类,则写法与构造器引用一致。

/**
 *
 * @author : <h2>冷环渊</h2>
 * @date : 2021/12/11
 * @context:<h4>
 *
 * 一、构造器引用
 *      和方法引用类似,函数式接口的抽象方法的形参列表和构造器的形参列表一致。
 *      抽象方法的返回值类型即为构造器所属的类的类型
 *
 * 二、数组引用
 *     大家可以把数组看做是一个特殊的类,则写法与构造器引用一致。
 * </h4>
 */
public class ConstructorRefTest {
    //构造器引用
    //Supplier中的T get()
    //Employee的空参构造器:Employee()
    @Test
    public void test1() {
        Supplier<Employee> sup = new Supplier<Employee>() {
            @Override
            public Employee get() {
                return new Employee();
            }
        };
        System.out.println("*******************");
        Supplier<Employee> sup1 = () -> new Employee();
        System.out.println(sup1.get());
        System.out.println("*******************");
        Supplier<Employee> sup2 = Employee::new;
        System.out.println(sup2.get());
    }
    //Function中的R apply(T t)
    @Test
    public void test2() {
        Function<Integer, Employee> func1 = id -> new Employee(id);
        Employee employee = func1.apply(1001);
        System.out.println(employee);
        System.out.println("*******************");
        Function<Integer, Employee> func2 = Employee::new;
        Employee employee1 = func2.apply(1002);
        System.out.println(employee1);
    }
    //BiFunction中的R apply(T t,U u)
    @Test
    public void test3() {
        BiFunction<Integer, String, Employee> func1 = (id, name) -> new Employee(id, name);
        System.out.println(func1.apply(1001, "Tom"));
        System.out.println("*******************");
        BiFunction<Integer, String, Employee> func2 = Employee::new;
        System.out.println(func2.apply(1002, "Tom"));
    }
    //数组引用
    //Function中的R apply(T t)
    @Test
    public void test4() {
        Function<Integer, String[]> func1 = length -> new String[length];
        String[] arr1 = func1.apply(5);
        System.out.println(Arrays.toString(arr1));
        System.out.println("*******************");
        Function<Integer, String[]> func2 = String[]::new;
        String[] arr2 = func2.apply(10);
        System.out.println(Arrays.toString(arr2));
    }
}

总结

全新的语法带来了很多的便捷,理解起来可能相对麻烦

这里在改变语法为Lambda的时候,可以自己找找可以省去,那一些部分

思考,为什么构造器引用可以根据数量和类型去找到对应的构造器


相关文章
|
9天前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
|
11天前
|
分布式计算 Java API
Java 8引入了流处理和函数式编程两大新特性
Java 8引入了流处理和函数式编程两大新特性。流处理提供了一种声明式的数据处理方式,使代码更简洁易读;函数式编程通过Lambda表达式和函数式接口,简化了代码书写,提高了灵活性。此外,Java 8还引入了Optional类、新的日期时间API等,进一步增强了编程能力。这些新特性使开发者能够编写更高效、更清晰的代码。
25 4
|
10天前
|
Java
java线程接口
Thread的构造方法创建对象的时候传入了Runnable接口的对象 ,Runnable接口对象重写run方法相当于指定线程任务,创建线程的时候绑定了该线程对象要干的任务。 Runnable的对象称之为:线程任务对象 不是线程对象 必须要交给Thread线程对象。 通过Thread的构造方法, 就可以把任务对象Runnable,绑定到Thread对象中, 将来执行start方法,就会自动执行Runable实现类对象中的run里面的内容。
24 1
|
13天前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
53 4
|
15天前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
41 4
|
17天前
|
Java 测试技术 Maven
Java一分钟之-PowerMock:静态方法与私有方法测试
通过本文的详细介绍,您可以使用PowerMock轻松地测试Java代码中的静态方法和私有方法。PowerMock通过扩展Mockito,提供了强大的功能,帮助开发者在复杂的测试场景中保持高效和准确的单元测试。希望本文对您的Java单元测试有所帮助。
32 2
|
IDE Java 关系型数据库
Java14发布,16大新特性,代码更加简洁明快
Java14发布,16大新特性,代码更加简洁明快
321 0
Java14发布,16大新特性,代码更加简洁明快
|
11天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
20天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
7天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
27 9