ESC服务器上部署hadoop集群的体验

简介: hadoop集群搭建(HDFS使用)

部署安装

集群分配

消耗资源的不要放在一起,需要协调工作的要放在一起

zydu1 zydu2 zydu3
HDFS NameNode
DataNode

DataNode | SecondNameNode
DataNode |
| YARN | ResourceManager
NodeManager |

NodeManager |

NodeManager |

核心配置文件

cron-site.xml

<configuration>
    <!-- 指定NameNode的地址 -->
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://zydu1:8020</value>
    </property>

    <!-- 指定hadoop数据的存储目录 -->
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/usr/local/hadoop/data</value>
    </property>

    <!-- 配置HDFS网页登录使用的静态用户为root -->
    <property>
        <name>hadoop.http.staticuser.user</name>
        <value>root</value>
    </property>
</configuration>

HDFS

hdfs-site.xml

<configuration>
    <!-- nn web端访问地址-->
    <property>
        <name>dfs.namenode.http-address</name>
        <value>zydu1:9870</value>
    </property>
    <!-- 2nn web端访问地址-->
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>zydu3:9868</value>
    </property>
</configuration>

YARN

yarn-site.xml

<configuration>
    <!-- 指定MR走shuffle -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!-- 指定ResourceManager的地址-->
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>zydu2</value>
    </property>

    <!-- 环境变量的继承 -->
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>
</configuration>

MapReduce

mapred-site.xml

<configuration>
    <!-- 指定MapReduce程序运行在Yarn上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>
相关文章
|
1月前
|
弹性计算 监控 负载均衡
|
24天前
|
弹性计算 开发工具 git
2分钟在阿里云ECS控制台部署个人应用(图文示例)
作为一名程序员,我在部署托管于Github/Gitee的代码到阿里云ECS服务器时,经常遇到繁琐的手动配置问题。近期,阿里云ECS控制台推出了一键构建部署功能,简化了这一过程,支持Gitee和GitHub仓库,自动处理git、docker等安装配置,无需手动登录服务器执行命令,大大提升了部署效率。本文将详细介绍该功能的使用方法和适用场景。
2分钟在阿里云ECS控制台部署个人应用(图文示例)
|
1月前
|
PHP 数据库 数据安全/隐私保护
布谷直播源码部署服务器关于数据库配置的详细说明
布谷直播系统源码搭建部署时数据库配置明细!
|
2月前
|
关系型数据库 MySQL Linux
基于阿里云服务器Linux系统安装Docker完整图文教程(附部署开源项目)
基于阿里云服务器Linux系统安装Docker完整图文教程(附部署开源项目)
314 3
|
2月前
|
NoSQL Linux PHP
|
2月前
|
弹性计算 数据库连接 Nacos
阿里云ECS服务器在docker中部署nacos
docker pull nacos 失败,docker部署nacos遇到的问题,nacos数据库连接,nacos端口映射
130 1
|
2月前
|
监控 网络安全 调度
Quartz.Net整合NetCore3.1,部署到IIS服务器上后台定时Job不被调度的解决方案
解决Quartz.NET在.NET Core 3.1应用中部署到IIS服务器上不被调度的问题,通常需要综合考虑应用配置、IIS设置、日志分析等多个方面。采用上述策略,结合细致的测试和监控,可以有效地提高定时任务的稳定性和可靠性。在实施任何更改后,务必进行充分的测试,以验证问题是否得到解决,并监控生产环境的表现,确保长期稳定性。
74 1
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
173 6
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
70 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
94 2